Abstract
This study evaluates the effects of silver nanoparticles on Capsicum annuum, a plant of significant economic and cultural importance in Mexico. The objective was to assess the impact of these nanoparticles on oxidative stress, metabolite production, and antioxidant capacities in plants. Three nanoparticle concentrations were applied to chili crops during two harvest periods, with tissues analyzed using spectroscopy and biochemical assays. Results revealed that nanoparticles influence the absorption of essential elements such as calcium and magnesium and induce changes in the production of primary and secondary metabolites. In early stages, significant reductions in polyphenols were observed, while flavonoids and tannins increased over time. Antioxidant activity and peroxidase enzyme performance showed concentration-dependent variations, suggesting a metabolic adaptation period. These findings underscore the need for extensive studies on plants' long-term adaptive responses to nanoparticle exposure.
References
Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols 2007, 2(4), 875–877. https://doi.org/10.1038/nprot.2007.102
Ansari, M., Ahmed, S., Abbasi, A., Khan, M. T., Subhan, M., Bukhari, N. A., Hatamleh, A. A., & Abdelsalam, N. R. (2023). Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Scientific Reports 2023, 13(1), 1–19. https://doi.org/10.1038/s41598-023-45038-x
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4). https://doi.org/10.3390/molecules27041326
Broadhurst, R. B., & Jones, W. T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9), 788–794. https://doi.org/10.1002/JSFA.2740290908
Budhani, S., Egboluche, N. P., Arslan, Z., Yu, H., & Deng, H. (2019). Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 37(4), 330–355. https://doi.org/10.1080/10590501.2019.1676600
Castillo, F. J., Penel, C., & Greppin, H. (1984). Peroxidase Release Induced by Ozone in Sedum album Leaves: Involvement of Ca2+. Plant Physiology, 74(4), 846. https://doi.org/10.1104/PP.74.4.846
Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M. H., Elsohly, M. A., & Khan, I. A. (2014). Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evidence-Based Complementary and Alternative Medicine : ECAM, 2014, 253875. https://doi.org/10.1155/2014/253875
Chen, S., Yan, X., Peralta-Videa, J. R., Su, Z., Hong, J., & Zhao, L. (2023). Biological effects of AgNPs on crop plants: environmental implications and agricultural applications. Environmental Science: Nano, 10(1), 62–71. https://doi.org/10.1039/D2EN00801G
Chung, I. M., Rajakumar, G., & Thiruvengadam, M. (2018). Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biologica Hungarica, 69(1), 97–109. https://doi.org/10.1556/018.68.2018.1.8
Duman, H., Eker, F., Akdaşçi, E., Witkowska, A. M., Bechelany, M., & Karav, S. (2024). Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties. Nanomaterials 2024, 14(18), 1527. https://doi.org/10.3390/NANO14181527
FAO Statistical Programme of Work 2020–2021. (2020). FAO Statistical Programme of Work 2020–2021. https://doi.org/10.4060/CA9734EN
Ferdous, Z., & Nemmar, A. (2020). Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 21(7), 2375. https://doi.org/10.3390/IJMS21072375
Geisler-Lee, J., Wang, Q., Yao, Y., Zhang, W., Geisler, M., Li, K., Huang, Y., Chen, Y., Kolmakov, A., & Ma, X. (2013). Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 7(3), 323–337. https://doi.org/10.3109/17435390.2012.658094
Gohari, A. R., Hajimehdipoor, H., Saeidnia, S., Ajani, Y., & Hadjiakhoondi, A. (2011). Antioxidant activity of some medicinal species using FRAP assay. Journal of Medicinal Plants, 10(37), 165-170. https://jmp.ir/article-1-233-en.pdf
Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science and Technology, 43(24), 9216–9222. https://doi.org/10.1021/ES9015553
Harish, V., Tewari, D., Gaur, M., Yadav, A. B., Swaroop, S., Bechelany, M., & Barhoum, A. (2022). Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12(3), 457. https://doi.org/10.3390/NANO12030457
Jiang, H. S., Yin, L. Y., Ren, N. N., Zhao, S. T., Li, Z., Zhi, Y., Shao, H., Li, W., & Gontero, B. (2017). Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant. Nanotoxicology, 11(2), 157–167. https://doi.org/10.1080/17435390.2017.1278802
Khan, S., Zahoor, M., Sher Khan, R., Ikram, M., & Islam, N. U. (2023). The impact of silver nanoparticles on the growth of plants: The agriculture applications. Heliyon, 9(6), e16928. https://doi.org/10.1016/J.HELIYON.2023.E16928
Kraft, K. H., Brown, C. H., Nabhan, G. P., Luedeling, E., De Jesús Luna Ruiz, J., D’Eeckenbrugge, G. C., Hijmans, R. J., & Gepts, P. (2014). Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6165–6170. https://doi.org/10.1073/pnas.1308933111
Kruszka, D., Sawikowska, A., Kamalabai Selvakesavan, R., Krajewski, P., Kachlicki, P., & Franklin, G. (2020). Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Science of The Total Environment, 716, 135361. https://doi.org/10.1016/J.SCITOTENV.2019.135361
Kumar, S., Masurkar, P., Sravani, B., Bag, D., Sharma, K. R., Singh, P., Korra, T., Meena, M., Swapnil, P., Rajput, V. D. & Minkina T. (2023). A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants. Journal of Nanoparticle Research 2023, 25(4), 1–25. https://doi.org/10.1007/S11051-023-05708-3
Li, Y., & Cummins, E. (2022). Probabilistic risk assessment of AgNPs for human health through dietary consumptions of crops. Environmental Science: Nano, 9(8), 3049–3065. https://doi.org/10.1039/D2EN00149G
Martínez-Cisterna, D., Rubilar, O., Tortella, G., Chen, L., Chacón-Fuentes, M., Lizama, M., Parra, P., & Bardehle, L. (2024). Silver Nanoparticles as a Potent Nanopesticide: Toxic Effects and Action Mechanisms on Pest Insects of Agricultural Importance—A Review. Molecules 2024, 29(23), 5520. https://doi.org/10.3390/MOLECULES29235520
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/AC60147A030
Molina-Roco, M., Fernández, C., Mercado, C., Manquián-Cerda, K., & Arancibia-Miranda, N. (2020). Efecto de nanoparticulas de plata sobre el crecimiento de trigo (triticum aestivum l.) y la disponibilidad de fósforo en presencia/ausencia de fertilización fosfatada en un andisol. Convibra. https://www.convibra.org/publicacao/18664/
Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bulletin of the National Research Centre 2019, 43(1), 1–6. https://doi.org/10.1186/S42269-019-0077-Y
Selvakesavan, R. K., Kruszka, D., Shakya, P., Mondal, D., & Franklin, G. (2023). Impact of Nanomaterials on Plant Secondary Metabolism. Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications, 133–170. https://doi.org/10.1007/978-3-031-20878-2_6
Sharma, P., Bhatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and Antioxidant Status of Brassica juncea. Applied Biochemistry and Biotechnology, 167(8), 2225–2233. https://doi.org/10.1007/s12010-012-9759-8
Servicio de Información Agroalimentaria y Pesquera. (2022). Producción agrícola: Chile verde (Capsicum annuum). Secretaría de Agricultura y Desarrollo Rural. www.gob.mx
Siddiqi, K. S., & Husen, A. (2022). Plant response to silver nanoparticles: a critical review. Critical Reviews in Biotechnology, 42(7), 973–990. https://doi.org/10.1080/07388551.2021.1975091
Sun, S. W., Lin, Y. C., Weng, Y. M., & Chen, M. J. (2006). Efficiency improvements on ninhydrin method for amino acid quantification. Journal of Food Composition and Analysis, 19(2–3), 112–117. https://doi.org/10.1016/J.JFCA.2005.04.006
Tymoszuk, A. (2021). Silver nanoparticles effects on in vitro germination, growth, and biochemical activity of tomato, radish, and kale seedlings. Materials, 14(18). https://doi.org/10.3390/ma14185340
Wu, J., Wang, G., Vijver, M. G., Bosker, T., & Peijnenburg, W. J. G. M. (2020). Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. Environmental Pollution, 261, 114117. https://doi.org/10.1016/J.ENVPOL.2020.114117
Yang, J., Jiang, F., Ma, C., Rui, Y., Rui, M., Adeel, M., Cao, W., & Xing, B. (2018). Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study. Journal of Agricultural and Food Chemistry, 66(11), 2589–2597. https://doi.org/10.1021/ACS.JAFC.7B04904
Zielińska, E., Baraniak, B., & Karaś, M. (2017). Antioxidant and Anti-Inflammatory Activities of Hydrolysates and Peptide Fractions Obtained by Enzymatic Hydrolysis of Selected Heat-Treated Edible Insects. Nutrients, 9(9), 970. https://doi.org/10.3390/nu9090970

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.