Abstract
The objectives of this study aimed to correlate environmental and donor management factors that may affect the production and the viability of the cumulus oocyte complexes (COCs) from zebu cows (N=205) in the tropics. A total of (N=5896) COCs were obtained by ovum-pick up (OPU) at different livestock facilities. The COCs were evaluated by stereoscopic microscopy and the dependent variables were: 1) total of COC recovered and 2) percentage of viable COCs. Environmental variables were as follows: Temperature-Humidity Index (THI, comfort, alert, danger and emergency); seasons by rainfall: dry (December-May) and rainy (June-November), and seasons by month. Management included; technological index (TI: low, medium, high), diet (grazing or grazing + supplementation), acclimation (<30, 30–90 and >90 days). One-way ANOVA, factorial and multivariate analysis were performed. THI in comfort and alert resulted in higher viability (68.86±2.00; 74.10±2.59) than danger and emergency indexes (62.40±2.01; 56.52±5.51; p<0.05). Additionally, during summer and winter COCs had lower numerical viability than those recovered in spring and fall 56.88±3.20; 61.07±2.25 vs., 67.90±2.19 ; 76.25±1.92, respectively. Further, high TI resulted in higher viability when compared to low and medium TI 35.54±5.16 vs., 27.31±1.72 and 28.20±1.84, respectively. Furthermore, Grazing cows receiving additional dietary supplementation improved viable COCs compared to grazing alone (30.96±1.77 vs 25.25±2.09; p<0.05). Acclimation had an effect on total COC production and, this was higher in <30 and 30-90 days than >90 37.62±5.24 and 32.65±2.45 vs., 24.21±1.50; respectively (p<0.05).
References
Absalón-Medina, V., Blake, R., Fox, D. Juárez-Lagunes, F., Nicholson. C., Canudas-Lara, E., & Rueda-Maldonado, B. (2012). Limitations and potentials of dual-purpose cow herds in Central Coastal Veracruz, Mexico. Tropical Animal Health Production. 44, 1131-1142. https://doi.org/10.1007/s11250-011-0049-1
Aguiar, A., Vendramini, J., Arthington, J., Sollenberger, L., Sánchez, J., da Silva, W, Valente, A., & Salvo, P. (2014). Stocking rate effects on ‘Jiggs’ bermudagrass pastures grazed by heifers receiving supplementation. Crop Science, 54(6), 2872-2879. https://doi.org/10.2135/cropsci2014.02.0135
Ahmed, J. A., Nashiruddullah, N., Dutta, D., Biswas, R. K., & Borah, P. (2017). Cumulus cell expansion and ultrastructural changes in in vitro matured bovine oocytes under heat stress. Iranian journal of veterinary research, 18(3), 203–207. https://pubmed.ncbi.nlm.nih.gov/29163650/
Arrieta-González, A., Hernández-Beltrán, A., Barrientos-Morales, M., Martínez-Herrera, D.I., Cervantes-Acosta, A., Rodríguez-Andrade, A., & Domínguez-Mancera, B. (2022). Characterization and technological typification of bovine dual-purpose system of the Huasteca Veracruzana Mexico. Revista MVZ Córdoba, 27(2), e2444. https://doi.org/10.21897/rmvz.2444
Calvo, J., Pérez, V., Fila, D., & Campos, E. (2004). Evaluación de la viabilidad de ovocitos bovinos mediante la luteinización' 3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoliuIn bromid. Veterinaria, (Montevideo), 39(154), 7-10. https://www.revistasmvu.com.uy/index.php/smvu/article/view/474
Baruselli, P. S., de Sá Filho, M. F., Martins, C. M., Nasser, L. F., Nogueira, M. F., Barros, C. M., & Bó, G. A. (2006). Superovulation and embryo transfer in Bos indicus cattle. Theriogenology, 65(1), 77–88. https://doi.org/10.1016/j.theriogenology.2005.10.006
Bó, G. A., & Pincay, J. (2017). The role of oocyte competence in the reproductive success of cattle. Theriogenology, 87, 26-36. https://doi.org/10.1016/j.theriogenology.2016.09.009
Cao, L., & Jiang, X. (2020). Environmental effects on oocyte quality and fertility in dairy cows. Animal Reproduction Science, 218, 106400. https://doi.org/10.1016/j.anireprosci.2020.106400
Cardone, A., Cáceres, R., Sanhueza, A., Bruna, A., & Laconi, R. (2022). Effects of short-term in vitro heat stress on bovine preantral follicles. Livestock Science. 254. https://doi.org/10.1016/j.livsci.2022.105076.
Cruz, H. A., Hernández, G. A., Chay, C. A. J., Mendoza, P. S. I., Ramírez, V. S., Rojas, G., Adelaido, R., & Ventura, R. J. (2017). Componentes del rendimiento y valor nutritivo de Brachiaria humidicola cv Chetumal a diferentes estrategias de pastoreo. Revista Mexicana de Ciencias Agrícolas, 8(3), 599–610. https://doi.org/10.29312/remexca.v8i3.34
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati., & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary world, 9(3), 260–268. https://doi.org/10.14202/vetworld.2016.260-268
De Freitas W., & Pinheiro E. (2013). Nível tecnológico e seus determinantes na apicultura cearense. RPA. 22(3):32–47. https://seer.sede.embrapa.br/index.php/RPA/article/view/764/721
Díaz-Rivera, P., Oros-Noyola, V., Vilaboa-Arroniz, J., Martínez-Dávila, J. P., & Torres-Hernández, G. (2011). Dinámica del desarrollo de la ganadería doble propósito en las Choapas, Veracruz, México. Tropical and Subtropical Agroecosystems, 14(1), 191-199. https://www.redalyc.org/articulo.oa?id=93915703018
Ferreira, F., Pires, M., & Martinez, M. (2009). Parâmetros clínicos, hematológicos, bioquímicos e hormonais de bovinos submetidos ao estresse calórico. Arq. Bras. Med. Vert. Zootec. 61(4), 769-776. https://doi.org/10.1590/S0102-09352009000400002
Galina, C., Turnbull, F., & Noguez-Ortiz, A. (2016) Factors Affecting Technology Adoption in Small Community Farmers in Relation to Reproductive Events in Tropical Cattle Raised under Dual Purpose Systems. Open Journal of Veterinary Medicine, 6, 15-21. http://doi:10.4236/ojvm.2016.61003.
Galina, C.S., & Geffroy, M. (2023). Dual-Purpose Cattle Raised in Tropical Conditions: What Are Their Shortcomings in Sound Productive and Reproductive Function? Animals, 13, 2224. https://doi.org/10.3390/ani13132224
Gendelman, M., & Roth, Z. (2012). Seasonal effect on germinal vesicle-stage bovine oocytes is further expressed by alterations in transcript levels in the developing embryos associated with reduced developmental competence. Biology of reproduction, 86(1), 1–9. https://doi.org/10.1095/biolreprod.111.092882
González, F., & Salas, R. (2019). Impact of climatic factors on reproductive performance in tropical cattle. Tropical Animal Health and Production, 51(4), 657-664. https://doi.org/10.1007/s11250-019-01926-5
Grossi, G., Goglio, P., Vitali, A., & Williams, A. G. (2018). Livestock and climate change: impact of livestock on climate and mitigation strategies. Animal frontiers: the review magazine of animal agriculture, 9(1), 69–76. https://doi.org/10.1093/af/vfy034
Gutiérrez, A. M. (2018). Estrés calórico en la hembra bovina: cambios fisiológicos in vivo y modelo de estudio in vitro de ovocitos. Tesis de Doctorado, Universidad de la republica uruguay, Doctor en ciencias veterinarias. https://bibliotecadigital.fvet.edu.uy/handle/123456789/1386
Hansen, P. (2009). Effects of heat stress on mammalian reproduction. Phil. Trans. R. Soc. 3341–3350. https://doi.org/10.1098/rstb.2009.0131
Hernández-Ignacio, J., Gonzalez-Gómez, R., & Mejia-Flores, I. (2023). Effect of climate on superovulatory response, quality and stage of embryonic development in tropical cattle. Archivos Latinoamericanos de Producción Animal. 31, 57-60. https://doi.org/10.53588/alpa.310511
International Embryo Transfer [IETS]. (1998). Manual of the International Embryo Transfer Society. Stringfellow DA., Seidel SM (eds). USA: Ed. Savoy. 170 p
Jaya, B., Kumar, S., Sinha, B., Sinha, S., & Paswan, J. (2016). Focusing biotic stress in livestock, 3(11), 812-814. http://dx.doi.org/10.13140/RG.2.2.23341.82409
Juárez-Barrientos, J. M., Herman-Lara, E., Soto-Estrada, A., Avalos-de la Cruz, D. A., Vilaboa, A. J., & Díaz-Rivera P. (2015). Tipificación de sistemas de doble propósito para producción de leche en el distrito de desarrollo rural 008, Veracruz, México. Revista Científica. 25(4):317-323. https://www.redalyc.org/articulo.oa?id=95941173007
Kayser, Y., Montiel, F., Severino, V., Canseco, R., Ahuja, C., Barrientos, M., & Molina, O., (2023). Caracterización tecnológica de ganaderos y su percepción sobre la transferencia de embriones en Guerrero, México. Acta universitaria, 33, e3745. https://doi.org/10.15174/au.2023.3745
Kasimanickam, R., Kasimanickam, V., Kastelic, J. P., & Ramsey, K. (2020). Metabolic biomarkers, body condition, uterine inflammation and response to superovulation in lactating Holstein cows. Theriogenology, 146, 71–79. https://doi.org/10.1016/j.theriogenology.2020.02.006
Kawano, K., Sakaguchi, K., Madalitso, C., Ninpetch, N., Kobayashi, S., Furukawa, E., Yanagawa, Y., & Katagiri, S. (2022). Effect of heat exposure on the growth and developmental competence of bovine oocytes derived from early antral follicles. Scientific reports, 12(1), 8857. https://doi.org/10.1038/s41598-022-12785-2
LeBlanc, S. J. (2004). Heat stress in dairy cattle. Journal of Dairy Science, 87(7), 2175-2189.
Loss, F., Van Vliet, C., Van Maurik, P., & Kruip Th. A.M. (1989). Morphology of immature bovine oocytes. Gameto Res, 24, 197-204. https://doi.org/10.1002/mrd.1120240207
Lucy, M. C. (2001). The role of nutrition in controlling ovulation rate in cattle. Journal of Animal Science, 79(1), 300-311.
Morera, A., Velasco, E., Herán, S., Romero, J., & Ruiz, S. (2022). Respuesta a la estimulación ovárica mediante fsh (folltropin®) y rendimiento de OPU en vacas adultas obtenidas por diferentes técnicas de reproducción asistida. Anales de Veterinaria Murcia, 36, 1-17. https://doi.org/10.6018/analesvet.538651
Narváez, H., Fontes, R. da S., Campos de carcalho, B., Varella, R., Slade, C., & Dos reis, A. (2022). Efecto de la progesterona plasmática en la competencia para el desarrollo embrionario in vitro de vacas Bos taurus taurus y Bos taurus indicus. Ciencia y Tecnología Agropecuaria, 23(2). DOI: https://doi.org/10.21930/rcta.vol23_num2_art:2003
Ninabanda, J.J. (2018). Impacto del balance energético negativo en vacas lecheras tratadas con somatotropina recombinante bovina. Revista veterinaria, 29(1), 68-72. https://dx.doi.org/10.30972/vet.2912794
Orantes, Z. M. A., Vilaboa, A. J., Ortega, J. E., & Córdova, A. V. (2010). Comportamiento de los comercializadores de ganado bovino en la región centro del estado de Chiapas. Revista que hacer cientíco, 1(9), 51-56. https://www.dgip.unach.mx/images/pdf-REVISTA-QUEHACERCIENTIFICO/QUEHACER-CIENTIFICO-2010-ener-jun/5_QCCH_9_Comportamiento_de_los_comercial.pdf
Pérez, J. A., & Castillo, F. (2021). Nutritional management of bovine reproductive health in tropical regions. Veterinary Clinics of North America: Food Animal Practice, 37(2), 307-321. https://doi.org/10.1016/j.vcfa.2021.02.006
Pérez-Mora, A., Segura-Correa, J. C., & Peralta-Torres, J. A. (2020). Factors associated with pregnancy rate in fixed-time embryo transfer in cattle under humid-tropical conditions of México. Animal reproduction, 17(2), e20200007. https://doi.org/10.1590/1984-3143-AR2020-0007
Restrepo-Mesa, S., Manjarres-Cor, l. & Parra-sosa B. (2021). Alimentación y nutrición de la mujer en etapas de gestación y lactancia: De lo básico a lo aplicado. 1 ed. Universidad de Antioquia. https://libros.udea.edu.co/index.php/editorial_udea/catalog/book/33
Ríos-Utrera, A., Villagómez-Amezcua, M. E., Zárate-Martínez, J. P., Calderón-Robles, R. C. & Vega-Murillo, V. E. Análisis reproductivo de vacas Suizo Pardo x Cebú y Simmental x Cebú en condiciones tropicales. Rev MVZ Cordoba. 2020; 25(1):e1637. https://doi.org/10.21897/rmvz.1637
Roth, Z., Arav, A., Bor, A., Zeron, Y., Braw-Tal, R., & Wolfenson, D. (2001). Improvement of quality of oocytes collected in the autumn by enhanced removal of impaired follicles from previously heat-stressed cows. Reproduction (Cambridge, England), 122(5), 737–744. https://pubmed.ncbi.nlm.nih.gov/11690534/
Roth, Z., & Hansen, P. J. (2004). Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biology of reproduction, 71(6), 1898–1906. https://doi.org/10.1095/biolreprod.104.031690
Roth, Z. (2020). Reproductive physiology and endocrinology responses of cows exposed to environmental heat stress - Experiences from the past and lessons for the present. Theriogenology, 155, 150-156. https://doi.org/10.1016/j.theriogenology.2020.05.040
Saizi, T., Mpayipheli, M., & Idowu, P. (2019). Heat tolerance level in dairy herds: a review on coping strategies to heat stress and ways of measuring heat tolerance. Journal of Animal Behaviour and Biometeorology, 7, 39–51. http://doi.org/10.31893/2318-1265jabb.v7n2p39-51
Saravanan, K., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G., Dutt, T., Mishra, B., Singh, R. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113 (3), 955-963. https://doi.org/10.1016/j.ygeno.2021.02.009
Silva, L. O., & Baruselli, P. S. (2012). Effects of heat stress on reproductive function in dairy cattle. Journal of Dairy Science, 95(3), 861-875.
Srikanth, K., Kwon, A., Lee, E., & Chung, H. (2017). Characterization of genes and pathways that respond to heat stress in Holstein terneros through transcriptome analysis. Chaper de estrés celular. 22, 29–42. https://doi.org/10.1007/S12192-016-0739-8
StatSoft, Inc. (2011) STATISTICA (Data Analysis Software System), Version 10. http://www.statsoft.com
Systat Software (2008). SigmaPlot V11, San Jose, CA. www.systatsoftware.com
Torres-Armas, E., & Huayama, P. (2021). Factores estructurales y funcionales de la ganadería de bovinos doble propósito de Molinopampa, Amazonas. Revista de investigación Agropecuaria Science and biotechnology. 1(1), 23-24. https://doi.org/10.25127/riagrop.20211.661
Turk, R., Podpecan, O., Mrkun, J., Flegar-Mestric, Z., Perkov, S., & Zrimsek, P. (2015). The Effect of Seasonal Thermal Stress on Lipid Mobilisation, Antioxidant Status and Reproductive Performance in Dairy Cows. Reproduction in domestic animals, 50, 595-603. https://doi.org/10.1111/rda.12534
Thoriya, A., Bhoi, D., Patel, M., Kumar, A., & Raval, K. (2024). Effect of stress on dairy animal reproduction. Journal of livestock science, 15, 276-284. https://doi.org/10.33259/JLivestSci.2024.276-284
Tinco-Salcedo, J., Quispe-Gutiérrez, U., & Zea-Gonzales, D. (2021). Asociación entre calidad de ovocitos recuperados y condición corporal en vacas criollas. Revista de Investigaciones Altoandinas, 23(3), 133-138. https://dx.doi.org/10.18271/ria.2021.294
Velázquez, M. A. (2023) Nutritional Strategies to Promote Bovine Oocyte Quality for In Vitro Embryo Production: Do They Really Work?. Vet. Sci. 10(10), 604. https://doi.org/10.3390/vetsci10100604
Vidal-Zepeda, R. (2005). Las Regiones Climáticas de México. Instituo de Geografía UNAM. 210
Vilaboa, A.J., & Díaz, R.P. (2009) Caracterización socioeconómica de los sistemas ganaderos en siete municipios del estado de Veracruz, México. Zootecnia Tropical 27(4): 427-436. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-72692009000400008
Vélez, M. M., & Uribe, V. L. F. (2010). ¿Cómo afecta el estrés calórico la reproducción? Biosalud, 9(2), 83–95. https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5505
Wu, B., & Zan, L. (2012). Enhance beef cattle improvement by embryo biotechnologies. Reproduction in domestic animals Zuchthygiene, 47(5), 865–871. https://doi.org/10.1111/j.1439-0531.2011.01945.x
Zavaleta-Martínez, A., Barrientos-Morales, M., Alpirez-Mendoza, M., Rodríguez-Andrade, A., Cervantes-Acosta, P., Hernández-Beltrán, A., Avedaño-Reyes, L., & Dominguez-Mancera, B. (2024). Effect of heatwaves on the pregnancy rate of dual-purpose recipient cows transferred with produced in-vitro embryos in tropical locations. Multidisciplinary Science Journal, 6(7), 2024103. https://doi.org/10.31893/multiscience.2024103

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.