Abstract
Applying high-intensity ultrasound (HIU) to plant proteins improves the functionality. Then, this research examined the impact of (HIU) at different power levels (600, 840, and 1080 W) and durations (10, 15, and 20 min) on the amino acid composition, hydrosolubility, foaming, emulsification, and antioxidant capacity of Coccoloba uvifera seed proteins (CUSPs). Compared with the control (untreated protein), CUSPs subjected to HIU presented increased levels of glutamic acid, aspartic acid, proline, glycine, and serine. The hydrosolubility of samples treated with HIU significantly improved, ranging from 79.90 to 87.53%. Treatment with HIU at 600 W for 10 min enhanced the foaming properties, while exposing CUSP to HIU at 600 and 1080 W for 15 min improved the emulsifying properties. Compared with the control (52.12 ± 1.85%), the 840 W treatment for 15 min enhanced the antioxidant properties (96.82 ± 0.16%). The application of HIUs in CUSP enhanced the functionality. However, the degree of improvement depends on the HIU level and the treatment duration. This study demonstrated the feasibility of employing HIU to increase the functional attributes of plant proteins for potential utilisation in food products.
References
Adal, E. (2024). Modification of faba bean protein isolate by high-intensity ultrasound treatment: screening of physicochemical, thermal, and structural properties. Journal of Food Measurement and Characterization, 18(3), 2438–2449. https://doi.org/10.1007/s11694-024-02379-z
Aderinola, T. A., Fagbemi, T. N., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018). Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 4(10), e00877. https://doi.org/10.1016/j.heliyon.2018.e00877
Official methods of analysis of the association of official analytical chemists [AOAC]. (1990). Official methods of analysis of the association of official analytical chemists (15th ed). https://doi.org/https://es.scribd.com/document/663913126/AOAC-920-87
Bradford, M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
Brion-Espinoza, I. A., Iñiguez-Moreno, M., Ragazzo-Sánchez, J. A., Barros-Castillo, J. C., Calderón-Chiu, C., & Calderón-Santoyo, M. (2021). Edible pectin film added with peptides from jackfruit leaves obtained by high-hydrostatic pressure and pepsin hydrolysis. Food Chemistry: X, 12, 100170. https://doi.org/10.1016/j.fochx.2021.100170
Calderón-Chiu, C., Calderón-Santoyo, M., Barros-Castillo, J. C., Díaz, J. A., & Ragazzo-Sánchez, J. A. (2022). Structural Modification of Jackfruit Leaf Protein Concentrate by Enzymatic Hydrolysis and Their Effect on the Emulsifier Properties. Colloids and Interfaces, 6(4), 52. https://doi.org/10.3390/colloids6040052
Calderón-Chiu, C., Calderón-Santoyo, M., Herman-Lara, E., & Ragazzo-Sánchez, J. A. (2021). Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: Physicochemical characterization, techno-functional properties and antioxidant capacity. Food Hydrocolloids, 112, 106319. https://doi.org/10.1016/j.foodhyd.2020.106319
Collantes-Chávez-Costa, A., Alanis-Rodríguez, E., Yam-Uicab, O., López-Contreras, C., Sarmiento-Muñoz, T., & Tapia-Muñoz, J. L. (2019). Composition, structure and diversity of coastal vegetation in the northeastern of Cozumel, Mexico. Botanical Sciences, 97(2), 135–147. https://doi.org/10.17129/botsci.2044
Corzo‐Martínez, M., Villamiel, M., & Moreno, F. J. (2017). Impact of High‐intensity Ultrasound on Protein Structure and Functionality during Food Processing. In Ultrasound in Food Processing (pp. 417–436). Wiley. https://doi.org/10.1002/9781118964156.ch16
Du, H., Zhang, J., Wang, S., Manyande, A., & Wang, J. (2022). Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. LWT, 155, 112952. https://doi.org/10.1016/j.lwt.2021.112952
Flores‐Jiménez, N. T., Ulloa, J. A., Urías‐Silvas, J. E., & Hidalgo‐Millán, A. (2023). Modification of rheological properties of animal and vegetable proteins treated with high‐intensity ultrasound: A review. Food Frontiers, 4(2), 700–720. https://doi.org/10.1002/fft2.220
González-Muñoz, A., Valle, M., Aluko, R. E., Bazinet, L., & Enrione, J. (2022). Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa Willd.) by electrodialysis with ultrafiltration membranes. Food Science and Human Wellness, 11(6), 1650–1659. https://doi.org/10.1016/J.FSHW.2022.06.024
Hussain, M., Zhong, H., Hussain, K., Manzoor, M. F., Qayum, A., Liu, X., Xu, J., Hussain, A., Ahsan, H. M., & Guan, R. (2024). Emerging high intensity ultrasound for soymilk in boosting bioactivity, amino acids release, reducing anti-nutritional factors and allergenicity. Food Bioscience, 59, 104138. https://doi.org/10.1016/j.fbio.2024.104138
Jadhav, H. B., Das, M., Das, A., V, G., Choudhary, P., Annapure, U., & Alaskar, K. (2024). Enhancing the functionality of plant-based proteins with the application of ultrasound–A review. Measurement: Food, 13, 100139. https://doi.org/10.1016/j.meafoo.2024.100139
Justino, H. de F. M., dos Santos, I. F., de Souza, R. C. N., Sanches, E. A., Bezerra, J. de A., Lamarão, C. V., Pires, A. C. dos S., & Campelo, P. H. (2024). Exploring ultrasound‐assisted technique for enhancing techno‐functional properties of plant proteins: a comprehensive review. International Journal of Food Science & Technology, 59(1), 498–511. https://doi.org/10.1111/ijfs.16673
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2012). Storage Stability of Protein Hydrolysate from Yellow Stripe Trevally ( Selaroides leptolepis ). International Journal of Food Properties, 15(5), 1042–1053. https://doi.org/10.1080/10942912.2010.513025
Nazari, B., Mohammadifar, M. A., Shojaee-Aliabadi, S., Feizollahi, E., & Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41, 382–388. https://doi.org/10.1016/j.ultsonch.2017.10.002
Rahman, M. M., Byanju, B., Grewell, D., & Lamsal, B. P. (2020). High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrasonics Sonochemistry, 64, 105019. https://doi.org/10.1016/j.ultsonch.2020.105019
Rahman, M. M., & Lamsal, B. P. (2021). Ultrasound‐assisted extraction and modification of plant‐based proteins: Impact on physicochemical, functional, and nutritional properties. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1457–1480. https://doi.org/10.1111/1541-4337.12709
Ramondo, A., Marulo, S., Sorrentino, A., Masi, P., & Di Pierro, P. (2024). Modification of Physicochemical and Functional Properties of Pumpkin Seeds Protein Isolate (PsPI) by High-Intensity Ultrasound: Effect of Treatment Time. ACS Food Science & Technology, 4(1), 40–48. https://doi.org/10.1021/acsfoodscitech.3c00253
Rawat, R., & Saini, C. S. (2023). Modification of sunnhemp (Crotalaria juncea) protein isolate by high intensity ultrasound: Impact on the molecular structure, amino acid composition and nutritional profiling. Food Bioscience, 56, 103100. https://doi.org/10.1016/j.fbio.2023.103100
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 29(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Segura Campos, M. R., Ruiz Ruiz, J., Chel-Guerrero, L., & Betancur Ancona, D. (2015). Coccoloba uvifera (L.) ( Polygonaceae ) Fruit: Phytochemical Screening and Potential Antioxidant Activity. Journal of Chemistry, 2015(1), 1–9. https://doi.org/10.1155/2015/534954
Sun, X., Abioye, R. O., Acquah, C., & Udenigwe, C. C. (2023). Application of Ultrasound Technology in Plant-Based Proteins: Improving Extraction, Physicochemical, Functional, and Nutritional Properties. In Green Protein Processing Technologies from Plants (pp. 265–289). Springer International Publishing. https://doi.org/10.1007/978-3-031-16968-7_11
Vera-Salgado, J., Calderón-Chiu, C., Calderón-Santoyo, M., Barros-Castillo, J. C., López-García, U. M., & Ragazzo-Sánchez, J. A. (2022). Ultrasound-Assisted Extraction of Artocarpus heterophyllus L. Leaf Protein Concentrate: Solubility, Foaming, Emulsifying, and Antioxidant Properties of Protein Hydrolysates. Colloids and Interfaces, 6(4), 50. https://doi.org/10.3390/colloids6040050
World Health Organization/Food and Agricultural Organization [WHO/FAO]. (2007).Report of a Joint WHO/FAO/UNU Expert Consultation 2007. WHO Technical Report Series No. 935. https://iris.who.int/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf
Xue, F., Zhu, C., Liu, F., Wang, S., Liu, H., & Li, C. (2018). Effects of high‐intensity ultrasound treatment on functional properties of plum ( Pruni domesticae semen ) seed protein isolate. Journal of the Science of Food and Agriculture, 98(15), 5690–5699. https://doi.org/10.1002/jsfa.9116
Yu, N., Jiang, C., Ning, F., Hu, Z., Shao, S., Zou, X., Meng, X., & Xiong, H. (2021). Protein isolate from Stauntonia brachyanthera seed: Chemical characterization, functional properties, and emulsifying performance after heat treatment. Food Chemistry, 345, 128542. https://doi.org/10.1016/J.FOODCHEM.2020.128542
Zhao, R., Liu, X., Liu, W., Liu, Q., Zhang, L., & Hu, H. (2022). Effect of high-intensity ultrasound on the structural, rheological, emulsifying and gelling properties of insoluble potato protein isolates. Ultrasonics Sonochemistry, 85, 105969. https://doi.org/10.1016/j.ultsonch.2022.105969

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.