Aqueous extract of agave pulquero (Agave salmiana) leaves as a source of dietetic fiber and compounds with antioxidant capacity
pdf (Español (España))

Keywords

Bioactive compounds
Storage
Chelating activity
Acid ascorbic
Phenolic compounds
Functional food
Antioxidant capacity
Flavonoid

Métricas de PLUMX 

Abstract

Agave salmiana is a maguey endemic to Mexico, its main product is pulque, a fermented mead. When the mead is exhausted, the maguey leaves are used as cattle feed. The objective was to prepare and evaluate extracts of maguey leaves, for which hot water and three stages of leaves were used, unscraped (SR), scraped (RM) and completely scraped (RC). Extracts were quantified for phenolic compounds content, ascorbic acid, antioxidant capacity (DPPH) and chelating activity, during their preparation and up to 8 months of storage. The phenolic compounds content (2913.33±277.9 mg GA/L), ascorbic acid (758.02±56.57 mg AA/L) and antioxidant capacity (930.7±44.09 µmol TE/L) increased during the elaboration of extracts. A 12.6-16.4% of dietary fiber was quantified in extracts. In addition, phenolic compounds (kaempferol and quercetin) were identified in the 3 extracts produced. During storage, phenolic compounds and their antioxidant capacity increased at the end of the eighth month in RM and RC extracts. It is concluded that the leaves of the maguey Agave salmiana can be used to obtain aqueous extracts rich in bioactive compounds with antioxidant capacity and dietary fiber, substances involved in the treatment and prevention of diseases.

https://doi.org/10.15741/revbio.12.e1772
pdf (Español (España))

References

Official Methods of Analysis. [AOAC]. (2006). “humedad: 920.151; proteína: 920.152; cenizas: 940.26”. AOAC International, 18th edition, Washington, D.C. USA.

Barba, F.J., Mariutti, L.R.B., Bragagnolo, N., Mercadante, A.Z., Barbosa-Cánovas, G.V., & Orlien, V. (2017). Bioaccesibility of bioactive compounds from fruits and vegetables after termal and nonthermal processing. Trends in Food Science and Technology, 67, 195-206. https://doi.org/10.1016/j.tifs.2017.07.006

Bhattacharya, M., Hota, A., Kar, A., Sankar Chini, D., Chandra Malick, R., Chandra Patra, B., & Kumar Das, B. (2018). In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). Journal of Genetic Engineering and Biotechnology, 16(2), 721-730. https://doi.org/10.1016/j.jgeb.2018.08.004

Brindhadevi, K., Chidambaram, M., Kavitha, R., Govindaraj, R., Chinnathambi, A., Salmen, S. H., Prabakaran, D. S., & Natesan, V. (2023). Extraction, antioxidant, and anticáncer activity of saponins extracted from Curcuma angustifolia. Applied Nanoscience, 13(1), 2063-2071. https://doi.org/10.1007/s13204-021-02096-9

Bouaziz, A., Masmoudi, M., Kamoun, A., & Besbes, S. (2014). Optimization of Insoluble and Soluble Fibres Extraction from Agave americana L. Using Response Surface Methodology. E-Journal of Chemistry, 13. https://doi.org/10.1155/2014/627103

Boukhatem, M. N., Boumaiza, A., Nada, H. G., Rajabi, M., & Mousa, S. A. (2020). Eucalyptus globulus Essential Oil as a natural Food Presercative: Antioxidant, Antibacterial and Antifungal Properties in vitro and in Real Food Matrix (Orangina Fruis Juice). Applied Science, 10(16), 5581. https://doi.org/10.3390/app10165581

Cunningham, M., Azcarate-Peril, M. A., Barnard, A., Benoit, V., Grimaldi, R., Guyonnet, D., Holscher, H. D., Hunter, K., Manurung, S., Obis, D., Petrova, M. I., Steinert, R. E., Swanson, K. S., Sinderen, D., Vulevic, J., & Gibson, G. R. (2021) Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 29(8), 667-685. https://doi.org/10.1016/j.tim.2021.01.003

Domínguez-Zarate, P. A., García-Martínez, I., Güemes-Vera, N., & Totosaus, A. (2019). Texture, color and sensory acceptance of tortilla and bread elaborated with Maya nut (Brosimim alicastrum) flour to increase total dietary fiber. Ciencia y Tecnología Agropecuaria, 20(3), 699-719. https://doi.org/10.21930/rcta.vol20_num3_art:1590

Dürüst, N., Dogan, S., & Dürüst, Y. (1997). Ascorbic acid and element contents of food of Trabzon (Turkey). Journal of Agriculture and Food Chemistry, 45(6), 2085-2087. https://doi.org/10.1021/jf9606159

Escalante, A., López-Soto, D. R., Velázquez-Gutiérrez, J. E., Giles-Gómez, M., Bolívar, F., & López-Munguía, A. (2016). Pulque, a Traditional Mexican Alcoholic Fermented Beverage: Historical, Microbiological, and Technical Aspects. Frontiers in Microbiology, 7, 1026. https://doi.org/10.3389/fmicb.2016.01026

Espinosa, M. F, Sancho, A. A., Mendoza, L. M., Mota, C. R., & Verbyla, M. E. (2020). Systematic review and meta-analysis of time-temperature pathogen inactivation. International Journal of Hygiene and Environmental Health, 230, 113595. https://doi.org/10.1016/j.ijheh.2020.113595

García-Mendoza, A. J., Franco-Martínez, I. S., & Sandoval-Gutiérrez, D. (2019). Cuatro especies nuevas de Agave (Asparagaceae, Agavoideae) del sur de México. Acta Botanica Mexicana, 126, e1461. https://doi.org/10.21829/abm126.2019.1461

Georgé, S., Brat, P., Alter, P., & Amiot, M. J. (2005). Rapid determinations of poliphenols and vitamin C in plant-derived products. Journal of Agriculture and Food Chemistry, 53(5), 1370-1373. https://doi.org/10.1021/jf048396b

Giannakourou, M. C., & Taoukis, P. S. (2021). Effect of Alternative preservation Steps and Storage on Vitamin C Stability in Fruit and Vegetable Products: Critical Review and Kinetic Modelling Approaches. Foods, 10(11), 2630. https://doi.org/10.3390/foods10112630

González-Montemayor, A. M., Flores-Gallegos, A. C., Serrato-Villegas, L. E., López-Pérez, M. G., Montañez-Sáenz, J. C., & Rodríguez-Herrera, R. (2019). 6 - Honey and syrups: Healthy and natural sweeteners with functional properties. Natural beverages, 13, 143-177. https://doi.org/10.1016/B978-0-12-816689-5.00006-7

Gulcin, I., Buyukokuroglu, M. E., & Kufrevioglu, O. I. (2003). Metal chelating and hydrigen peroxide scavenging effects of melatonin. Journal of Pineal Research, 34(4), 278-281. https://doi.org/10.1034/j.1600-079X.2003.00042.x

Herbig, A. L., & Renard, C. M. (2017). Factors that impact the stability of Vitamin C at intermediate temperatures in a food matrix. Food Chemistry, 220, 444-451. https://doi.org/10.1016/j.foodchem.2016.10.012

Hernández-Becerra, E., Aguilera-Barreiro, M. A., Contreras-Padilla, M., Pérez-Torrero, E., & Rodriguez-Garcia, M. E. (2022). Nopal cladodes (Opuntia Ficus Indica): Nutritional properties and functional potential. Journal of Functional Foods, 95, 105183. https://doi.org/10.1016/j.jff.2022.105183

IBM Corp. (2022). IBM SPSS Statistics for Windows (Version 25.0) [Computer software]. IBM Corp.

King, E. S., Noll, A., Glenn, S., & Bolling, B. W. (2022). Refrigerated and frozen storage impact aronia berry quality. Food Production, Processing and Nutrition, 4(3). https://doi.org/10.1186/s43014-021-00080-y

Lara-Avila J. P., & Alpuche-Solis, A. G. (2017). Análisis de la diversidad genética de agaves mezcaleros del centro de México. Revista Fitotecnia Mexicana, 39(3), 323-330.

Lee, S. H., & Labuza, T. P. (1975). Destruction of ascorbic-acid as a function of water activity. Journal of Food Science, 40(2), 370-373. https://doi.org/10.1111/j.1365-2621.1975.tb02204.x

Leal-Díaz, A. M., Santos-Zea, L., Martínez-Escobedo, H. C., Guajardo-Flores, D., Gutiérrez-Uribe, J. A., & Serna-Saldivar, S.O. (2015). Effect of Agave americana and Agave salmiana ripeness on saponins content from Aguamiel (Agave Sap). Journal Agriculture and Food Chemistry, 63(15), 3924-3930. https://doi.org/10.1021/acs.jafc.5b00883

Manssouri, M., Znini M., & Majidi, L. (2020). Studies in the antioxidant activity of essential oil and various extracts of Ammodaucus leucotrichus Coss. & Dur. Fruits from Morocco. Journal of Taibah University for Science, 14(1), 124-130. https://doi.org/10.1080/16583655.2019.1710394

Medina-Mendoza, C., Mendoza-Tolentino, Y., & Cervantes-Miranda, J. (2022). Determination of bioactive compounds in stalks of maguey pulquero (Agave salmiana). Revista de Ingeniería y Tecnologías para el Desarrollo Sustentable, 10(1), 34-41.

Morales, F., & Jiménez-Pérez, S. (2001). Radical scavenging capacity of Maillard reaction products as related color and fluorescence. Journal of Agriculture and Food Chemistry, 72(1), 119-125. https://doi.org/10.1016/S0308-8146(00)00239-9

Neri, L., Faieta, M., Di Mattia, C., Scchetti, G., Mastrocola, D., & Pittia, P. (2020). Antioxidant activity in frozen plant foods: Effect of cryoprotectants, freezing process and frozen storage. Foods, 9(12), 1886. https://doi.org/10.3390/foods9121886

Pinos-Rodríguez, J. M., Zamudio, M., & González, S. S. (2008). The effect of plant age on the chemical composition of fresh and ensiled Agave salmiana leaves. South African Journal of Animal Science, 38(1), 43-50. http://dx.doi.org/10.4314/sajas.v38i1.4108

Puente-Garza, C. A., Espinosa-Leal, C. A., & García-Lara, S. (2021). Effects of saline elicitors on saponin production in Agave salmiana plants grown in vitro. Plant Physiology and Biochemistry, 162, 476-482. https://doi.org/10.1016/j.plaphy.2021.03.017

Puente-Garza, C. A., García-Lara, S., & Gutiérrez-Uribe, J. A. (2017a). Enhancement of saponins and flavonols by micropropagation of Agave salmiana. Industrial Crops & Products, 105(15), 225-230. https://doi.org/10.1016/j.indcrop.2017.05.014

Puente-Garza, C. A., Meza-Miranda, C., Ochoa-Martínez, D., & García-Lara, S. (2017b). Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiology and Biochemistry 115(1), 400-407. https://doi.org/10.1016/j.plaphy.2017.04.012

Richardson, G. H. (1985). Standard methods for the examination of dairy products, 15th ed. APHA. CALSP. Washingtong, D.C. pp: 412.

Sablani, S. S. (2015). Freezing of fruits and impact on anthocyanins. Processing and Impact on Active Components in Food, 18, 147-156. https://doi.org/10.1016/B978-0-12-404699-3.00018-4

Sánchez-Franco, J. A., Ayala-Niño, A., Cariño-Cortés, R., Hernéndez-Fuentes, A. D., Castañeda-Ovando, A., Campos-Montiel, R. G., Román-Guerrero, A., & Jiménez-Alvarado, R. (2019). Vaccinium leucanthum Schlechtendahl fruit, a new source of dietary fiber and antioxidant compounds. Revista Mexicana de Ingeniería Química, 18(3), 901-911. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Sanchez

Valdivieso-Solís, D. G., Vargas-Escamilla, C. A. Mondragón-Contreras, N., Galván-Valle, G. A., Gilés-Gómez, M., Bolívar, F., & Escalante, A. (2021). Sustainable Production of Pulque and Maguey in Mexico: Current Situation and Perspectives. Frontier in Sustainable Food Systems, 5(1). https://doi.org/10.3389/fsufs.2021.678168

Velázquez-De Lucio, B. S., Hernández-Domínguez, E. M., Falcón-León, M. P., Téllez-Jurado, A., & Álvarez-Cervantes, J. (2024). Revalorization of degraded maguey pulquero substrate for Lycopersicon esculentum germination. Current Research in Microbial Sciences, 7, 100283. https://doi.org/10.1016/j.crmicr.2024.100283

Westhoff, D. C. (1981). Microbiology of ultrahigh temperature milk. Journal of Diary Science, 64(1), 167-173. https://doi.org/10.3168/jds.S0022-0302(81)82545-3

Zhi-Wei, G., En-Ze, G., & Quiang F. (2021). Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules, 26(22), 6802. https://doi.org/10.3390/molecules26226802

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.