Línea de tiempo de las concentraciones plasmáticas de cortisol y glucosa en lisa (Mugil cephalus) categorizados de acuerdo a estilo de afrontamiento al estrés de tipo proactivo y reactivo
PDF (Español (España))

Keywords

Corticosteroid
behaviour
Fish
stress response

Métricas de PLUMX 

Abstract

In fishes, cortisol is a hormone related to stress that intervenes in metabolic and physiological processes that prepare animals for a possible flight or confrontation. In fish farming, organisms are exposed to stressful conditions that may affect their health and survival. In aquaculture, fish are exposed to constant stressful situations that could affect welfare and quality. The objective of this study was to monitor plasma concentrations of cortisol and glucose in Mugil cephalus during a period of 24 hours after exposure to an acute stress. Additionally, the stress coping style behaviour was characterized to determine the impact of presenting proactive or reactive responses to stress. Cortisol concentration peak appeared at 15 min post-stress and glucose plasma was observed at 30 min post-stress. Homeostatic state was got back at 120 min post-stress for both cortisol and glucose blood concentrations. Proactive fish, presented a significantly lower cortisol level elevation than reactive fish after stress exposure and got their homeostatic state back faster than reactive fish. These results may be of interest to the aquaculture industry to improve welfare and management protocols.

https://doi.org/10.15741/revbio.12.e1712
PDF (Español (España))

References

Diario Oficial de la Federación [DOF]. (2015). Norma oficial mexicana NOM-016-SAG/PESC- 2014, para regular la pesca de lisa y liseta o lebrancha en aguas de jurisdicción federal del golfo de México y mar caribe, así como del océano pacífico, incluyendo el golfo de california índice. https://www.dof.gob.mx/nota_detalle.php?codigo=5402187&fecha=29/07/2015#gsc.tab=0

Secretaría de Agricultura y Desarrollo Rural [SEDER]. (2021). Norma Oficial Mexicana NOM-016-SAG/PESC-2014. Lisa, especie que alimenta a México. México City: Secretaría de Gobernación. https://www.dof.gob.mx/nota_detalle.php?codigo=5402187&fecha=29/07/2015#gsc.tab=0

Akbary, P., & Jahanbakhshi, A. (2016). Effect of starvation on growth, biochemical, hematological and non-specific immune parameters in two different size groups of grey mullet, Mugil cephalus (Linnaeus, 1758). Acta Ecologica Sinica, 36 (3), 205–211. https://doi.org/10.1016/j.chnaes.2016.04.008

Alfonso, S., Zupa, W., Manfrin, A., Fiocchi, E., Spedicato, M. T., Lembo, G., & Carbonara, P. (2020). Stress coping styles: Do the basal levels of stress physiological indicator is linked to behaviour of sea bream?. Applied Animal Behaviour Science, 231, 105085. https://doi.org/10.1016/j.applanim.2020.105085

Arkert, N., Childs, A-R., Duncan, M., Farthing, M., & Potts, W. (2020). Physiological stress response and recovery of an important estuarine fishery species, dusky kob Argyrosomus japonicus, after a simulated catch-and-release event. African Journal of Marine Science, 42 (3), 339–345. https://doi:org/10.2989/1814232x.2020.1801505

Bordin, D., & Freire, C. A. (2021). Remarkable variability in stress responses among subtropical coastal marine teleost. Marine Biology. 168, 122. https://doi.org/10.1007/s00227-021-03929-5

Castanheira, M.F., Conceição L.E.C., Millot, S., Rey, S., Bégout, M.L., Damsgård, B., Kristiansen, T., Höglund, E., Øverli, Ø. & …Martins C.I.M. (2017). Coping styles in farmed fish: consequences for aquaculture. Reviews in Aquaculture, 9, 23-41. https://doi.org/10.1111/raq.12100

Cowan, M., Azpeleta, C. & López-Olmeda, J. F. (2017). Rhythms in the endocrine system of fish: a review. Journal of Comparative Physiology B, 187, 1057–1089. https://doi.org/10.1007/s00360-017-1094-5

Crosetti, D., & Blader, S. (2016). Current state of grey mullet fisheries and culture. In: Biology, Ecology and Culture of Grey Mullets (Mugilidae). Blaber, S.J.M. and Crosetti, D. (Eds.). First edition. CRC Press, (pp.403- 404). https://doi.org/10.1201/b19927

Comisión Nacional de Acuacultura y Pesca. (2018). Lisa y Lebrancha, frutos del mar. CONAPESCA. https://www.gob.mx/conapesca/articulos/lisa-y-lebrancha-frutos-del-mar?idiom=es

Dai, Y., Shen, Y., Guo, J., Yang, H., Chen, F., Zhang, W., … Li, j. (2022). Glycolysis and gluconeogenesis are involved of glucose metabolism adaptation during fasting and re-feeding in black carp (Mylopharyngodon piceus). Aquaculture and Fisheries, 9, 2, 226-233. https://doi.org/10.1016/j.aaf.2022.04.003

Fatsini, E., Rey, S., Ibarra-Zatarain, Z., Boltaña, S., Mackenzie, S., & Duncan, N. J. (2019). Linking stress coping styles with brain mRNA abundance of selected transcripts for Senegalese sole (Solea senegalensis) juveniles. Physiology & Behavior, 213, 112724. https://doi.org/10.1016/j.physbeh.2019.112724

Food and Agriculture Organization of the United Nations [FAO]. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. Rome. https://doi.org/10.4060/cd0683en

Faught, E., & Vijayan M.M. (2018). Maternal stress and fish reproduction: the role of cortisol revisited. Fish and Fisheries, 19, 1016-1030. https://doi.org/10.1111/faf.12309

Ferrari, S., Rey, S., Höglund, E., Øverli, Ø., Chatain, B., MacKenzie, S., & Bégout, M-L. (2020). Physiological responses during acute stress recovery depend on stress coping style in European sea bass, Dicentrarchus labrax. Physiology & Behavior, 216, 0031-9384. https://doi.org/10.1016/j.physbeh.2020.112801

Guo, H., & Dixon, B. (2021). Understanding acute stress-mediated immunity in teleost fish. Fish and Shellfish Immunology Reports,2, 100010. https://doi.org/10.1016/j.fsirep.2021.100010

Henderson, D.W., & Small, B.C. (2018). Rapid acclimation of the cortisol stress response in adult turquoise killifish Nothobranchius furzeri. Laboratory Animals, 53, 383-393. https://doi.org/10.1177/0023677218793441

Houbrechts, A. M., Beckers, A., Vancamp, P., Sergeys, J., Gysemans, C., Mathieu, C., & Darras, V. M. (2019). Age-dependent changes in glucose homeostasis in male deiodinase type 2 knockout zebrafish. Endocrinology, 1, 160(11), 2759-2772. https://doi.org/10.1210/en.2019-00445

Ibarra-Zatarain, Z., Fatsini, E., Rey, S., Chereguini, O., Martin, I., Rasines, I., & Duncan, N. (2016). Characterization of stress coping style in Senegalese sole (Solea senegalensis) juveniles and breeders for aquaculture. Royal Society Open Science, 3(11), 160495. http://dx.doi.org/10.1098/rsos.160495

Ibarra-Zatarain, Z., Morais, S., Bonacic, K., Campoverde, C., & Duncan, N. (2015). Dietary fatty acid composition significantly influenced the proactive–reactive behaviour of Senegalese sole (Solea senegalensis) post-larvae. Applied Animal Behaviour Science, 171, 233–240. https://doi.org/10.1016/j.applanim.2015.08.0007

James, D., & Tomas, H. (2023). Biology and Ecology of Fishes. John Wiley & Sons, Inc. 111 River Street, Hoboken. NJ 07030, USA. (pp. 560-565), https://books.google.com.mx/books/about/Biology_and_Ecology_of_Fishes.html?id=yMzwAAAAMAAJ&redir_esc=y

Jiang, D., Wu, Y., Huang, D., Ren, X., & Wang, Y. (2017). Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon Idella. Fish Physiology and Biochemistry, 43, 1433–1442. https://doi.org/10.1007/s10695-017-0383-y

Jiménez-Rivera, J., Boglino, A., Linares-Cordova, J., Duncan, N., Ruíz-Gómez, M., Rey, S., & Ibarra-Zatarain, Z. (2022). Characterization of the different behaviours exhibited by juvenile flathead grey mullet (Mugil cephalus Linnaeus, 1758) under rearing conditions. Spanish Journal of Agricultural Research, 20(4), 2171-9292. https://doi.org/10.5424/sjar/2022204-18032

Kenari, A. A., Mahmoudi, N., Soltani, M., & Abediankenari, S. (2012). Dietary nucleotide supplements influence the growth, haemato-immunological parameters and stress responses in endangered Caspian brown trout (Salmo trutta caspius Kessler, 1877). Aquaculture Nutrition, 19, 54–63. https://doi.org/10.1111/j.1365-2095.2012.00938.x

Kitagawa, A. T., Costa, L. S., Paulino, R. R., Luz, R. K., Rosa, P.V., Guerra-Santos, B., & Fortes-Silva, R. (2015). Feeding behaviour and the effect of photoperiod on the performance and hematological parameters of the pacamã catfish (Lophiosilurus alexandri). Applied Animal Behaviour Science, 171, 211–218. https://doi.org/10.1016/j.applanim.2015.08.025

Koolhaas, M., Korte, S, M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., De Jong, I.C., Ruis, M.A.W., &… Blokhuis, H. J. (1999). Coping styles in animals: current status in behaviour and stress-physiology. Neuroscience & Biobehavioral Reviews, 23 (7), 925-935. https://doi.org/10.1016/s0149-7634(99)00026-3

Linares-Cordova, J. F., Rey-Planellas, S., Boglino, A., Jiménez-Rivera, J. A., Duncan, N. J., Rodriguez-Montes de Oca, G. A., & Ibarra-Zatarain, Z. (2024). Flathead grey mullet (Mugil cephalus) juveniles exhibit consistent proactive and reactive stress coping styles. Aquaculture, 578, 740012. https://doi.org/10.1016/j.aquaculture.2023.740012

Madaro, A., Nilsson J., Whatmore, P., Roh, H., Grove, S., Stien, L.H. & Olsen R.E. (2022). Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. Fish Physiology and Biochemistry. 49, 97-116. https://doi.org/10.1007/s10695-022-01163-4

Mohamadi, M., Bishkoul, G. R., Rastiannasab, A., Khara, H., & Hut, N. (2014). Physiological indicators of salinity stress in the grey mullet, Mugil cephalus, Linnaeus, 1758 juveniles. Comparative Clinical Pathology, 23, 1453–1456. https://doi.org/10.1007/s00580-013-1804-7

Moraes, G., & de Almeida, L. C. (2020). Nutrition and functional aspects of digestion in fish. Biology and Physiology of Freshwater Neotropical Fish, 251–271. https://doi.org/10.1016/b978-0-12-815872-2.00011-7

Øverli, Ø., Sørensen, C., Pulman, K. G. T., Pottinger, T. G., Korzan, W., Summers, C. H., & Nilsson, G. E. (2007). Evolutionary background for stress-coping styles: Relationships between physiological, behavioural and cognitive traits in non-mammalian vertebrates. Neuroscience & Biobehavioral Reviews, 31(3), 396-412. https://doi.org/10.1016/j.neubiorev.2006.10.006

Percie du Sert, N., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J.,Clark, A., Cuthill, I.C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S.T., Howells, D.W., Hurst, V., Karp, N.A., Lazic, S.E., Lidster, K., MacCallum, C.J., Macleod, M., & … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411

Prakoso, V. A., Kim, K. T., Min, B. H., Gustiano, R., & Chang, Y. J. (2015). Effects of salinity on oxygen consumption and blood properties of young grey mullets Mugil cephalus. Indones. Aquaculture Journal, 10(2), 143-153. https://dx.doi.org/10.15578/iaj.10.2.2015.143-153

Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio P-O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society B, 365(1560), 4051–4063. https://doi.org/10.1098/rstb.2010.0208

Roychowdhury, P., Aftabuddin, M., & Pati, M.K. (2024). A review on the impact of thermal stress on fish biochemistry. Aquatic Sciences and Engineering, 39(2), 121-129. https://doi.org/10.26650/ASE20231341460

Sadoul, B., & Geffroy, B. (2019). Measuring cortisol, the major stress hormone in fishes. Journal of Fish Biology, 94 (4), 540-555. https://doi.org/10.1111/jfb.13904

Saleh M. (2008) Capture-based aquaculture of mullets in Egypt. In A. Lovatelli and P.F. Holthus (eds). Capture-based aquaculture. Global overview. FAO Fisheries Technical Paper. No. 508. Rome, FAO. (pp. 109–126). https://www.fao.org/3/i0254e/i0254e04.pdf

Samaras, A. (2023). A Systematic Review and Meta-Analysis of Basal and Post-Stress Circulating Cortisol Concentration in an Important Marine Aquaculture Fish Species, European Sea Bass, Dicentrarchus labrax. Animals, 13(8) 1340. https://doi.org/10.3390/ani13081340

Samaras, A., Papandroulakis, N., Costari, M., & Pavlidis, M. (2015). Stress and metabolic indicators in a relatively high (European sea bass, Dicentrarchus labrax) and a low (meagre, Argyrosomus regius) cortisol responsive species, in different water temperatures. Aquaculture Research, 47, 3501–3515. https://doi.org/10.1111/are.12800

Schreck, C. B., & Tort, L. (2016). The Concept of Stress in Fish. Fish physiology, 35,1-34. https://doi.org/10.1016/B978-0-12-802728-8.00001-1

Schreck, C. B., Tort, L., Farrell, A. P., & Brauner, C. J. (2016). Biology of stress in fish. Academic Press. http://site.ebrary.com/id/11293867

Sopinka, N. M., Donaldson, M. R., O’Connor, C. M., Suski, C. D., & Cooke, S. J. (2016). Stress Indicators in Fish: In Biology of Stress in Fish. Eds Schreck, C.B., Tort, L., Farrell, A.P. and Brauner, C. Associated Press, pp. 405-462. https://doi.org/10.1016/b978-0-12-802728-8.00011-4

Thomas, P., Woodin, B. R., & Neff, J. M. (1980). Biochemical responses of the striped mullet Mugil cephalus to oil exposure I. Acute responses? Interrenal activations and secondary stress responses. Marine Biology, 59, 141–149. https://doi.org/10.1007/BF00396861

Tudorache, C., Schaaf, M. J. M., & Slabbekoorn, H. (2013). Covariation between behaviour and physiology indicators of coping style in zebrafish (Danio rerio). International Journal of Endocrinology, 219(3), 251–258. https://doi.org/10.1530/joe-13-0225

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.