Resumen
El Huizache (Caesalpinia cacalaco) es una leguminosa nativa de América, que prospera en el bosque seco tropical de México. Este estudio evaluó el contenido de compuestos fenólicos totales (CFT), la capacidad antioxidante y el potencial hipoglucemiante de los extractos de harina de semilla de C. cacalaco. El análisis fitoquímico confirmó la presencia de fenólicos, taninos y terpenos, mientras que no se observaron saponinas ni alcaloides. El contenido de CFT fue de 249.83 ± 0.68 mg de GAE/100 g. La actividad antioxidante, evaluada mediante ensayos ABTS y DPPH, fue de 3,931.26 ± 202.87 y 2,500.87 ± 14.44 µmol de TE/100 g, respectivamente. Las pruebas de inhibición enzimática mostraron una inhibición de la α-amilasa del 31,75 % (libre) y del 37,42 % (ligado), mientras que la de la α-glucosidasa fue del 43,52 % (libre) y del 26,15 % (ligada). Estos resultados sugieren que la harina de semilla de huizache posee una alta capacidad antioxidante y potencial hipoglucemiante, lo que la convierte en una fuente prometedora de compuestos bioactivos para el manejo de enfermedades crónicas.
Citas
Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A., & Serna-Saldívar, S.O. (2014). Bound phenolics in foods, a review. Food Chemistry, 152, 46–55. https://doi.org/10.1016/j.foodchem.2013.11.093
Aronés-Jara, M.R., Cárdenas-Landeo, E., Luna-Molero, H.R., Barbarán-Vilcatoma, S.M., & Gómez-Quispe, M. (2022). Tamizaje fitoquímico, contenido de compuestos fenólicos y potencial antioxidante de trece plantas medicinales de los afloramientos rocosos del Bosque de Piedras de Huaraca en Perú. Revista de la Sociedad Química del Perú, 88(2), 165-179. https://doi.org/10.37761/rsqp.v88i2.388
Bai, X., & Tang, J. (2020). Myrcene exhibits antitumor activity against lung cancer cells by inducing oxidative stress and apoptosis mechanisms. Natural Product Communications, 15(9), 1-7. https://doi.org/10.1177/1934578X20961189
Becerra-Tomás, N., Díaz-López, A., Rosique-Esteban, N., Ros, E., Buil-Cosiales, P., Corella, D., Estruch, R., Fitó, M., Serra-Majem, L., Arós, F., Lamuela-Raventós, R.M., Fiol, M., Santos-Lozano, J.M., Diez-Espino, J., Portoles, O., & Salas-Salvadó, J. (2018). Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clinical Nutrition, 37(3), 906-913. https://doi.org/10.1016/j.clnu.2017.03.015
Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted Grains: A Comprehensive Review. Nutrients, 11(2), 421. https://doi.org/10.3390/nu11020421
Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity, Lebensmittel Wissenchaft und Technologie, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Camacho-Escobar, M.A., Ramos-Ramos, D.A., Ávila-Serrano, N.Y., Sánchez-Bernal, E.I., & López-Garrido, S.J. (2020). Las defensas físico-químicas de las plantas y su efecto en la alimentación de los rumiantes. Terra Latinoamericana, 38(2), 443-453. https://doi.org/10.28940/terra.v38i2.629
Carbas, B., Salinas, M.V., Serrano, C., Passarinho, J.A., Puppo, M.C., Ricardo, C.P., & Brites, C. (2019). Chemical composition and antioxidant activity of commercial flours from Ceratonia siliqua and Prosopis spp. Journal of Food Measurement and Characterization, 13(1), 305-311. https://doi.org/10.1007/s11694-018-9945-7
Cereceres-Aragón, A., Rodrigo-García, J., Álvarez-Parrilla, E., & Rodríguez-Tadeo, A. (2019). Ingestión de compuestos fenólicos en población adulta mayor. Nutrición Hospitalaria, 36(2), 470-478. https://dx.doi.org/10.20960/nh.2171
Day, C., Cartwright, T., Provost, J., & Bailey, C. J. (1990). Hypoglycaemic effect of Momordica charantia extracts. Planta Medica, 56(5), 426–429. https://doi.org/10.1055/s-2006-961003
De Camargo, A.C., Concepción-Álvarez, A., Arias-Santé, M.F., Oyarzún, J.E., Andia, M.E., Uribe, S., Núñez Pizarro, P., Bustos, S.M., Schwember, A.R., Shahidi, F., & Bridi, R. (2022). Soluble Free, Esterified and Insoluble-Bound Phenolic Antioxidants from Chickpeas Prevent Cytotoxicity in Human Hepatoma HuH-7 Cells Induced by Peroxyl Radicals. Antioxidants (Basel, Switzerland), 11(6), 1139. https://doi.org/10.3390/antiox11061139
Devangan, S., Varghese, B., Johny, E., Gurram, S., & Adela, R. (2021). The effect of Gymnema sylvestre supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Phytotherapy Research, 35(12), 6802–6812. https://doi.org/10.1002/ptr.7265
Doué, G.G., Mégnanou, R.M., & Zoué, T.L. (2021). Multifunctional Bioactive Peptides from Germinated Soy (Glycin max) and Voandzou (Vigna subterranea) Beans: In-vitro Anti-Diabetic Potential through α-amylase α-glucosidase Inhibition, and Antioxidant Ability by DPPH Reducing. European Journal of Nutrition & Food Safety, 13(11), 20–32. https://doi.org/10.9734/ejnfs/2021/v13i1130463
Flieger, J., W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials (Basel, Switzerland), 14(15), 4135. https://doi.org/10.3390/ma14154135
Garrido, G., Ortiz, M., & Pozo, P. (2013). Fenoles y flavonoides totales y actividad antioxidante de extractos de hojas de Lampaya medicinalis F. Phil. Journal of Pharmacy & Pharmacognosy Research, 1(1), 30-38. https://doi.org/10.56499/jppres13.001_1.1.30
Gazwi, H.S.S., Omar, M.O.A., & Mahmoud, M.E. (2023). Phytochemical analysis, antioxidant capacities, and in vitro biological activities of the extract of seed coat as by-products of pea. BMC Chemistry, 17, 1. https://doi.org/10.1186/s13065-023-00911-8
Grosse-Brinkhaus, A., Bee, G., Silacci, P., Kreuzer, M., & Dohme-Meier, F. (2016). Effect of exchanging Onobrychis viciifolia and Lotus corniculatus for Medicago sativa on ruminal fermentation and nitrogen turnover in dairy cows. Journal of Dairy Science, 99(6), 4384–4397. https://doi.org/10.3168/jds.2015-9911
Gull, A., Lone, A.A., & Wani, N.U.I. (2019). Biotic and Abiotic Stresses in Plants. In A. Bosco de Oliveira (Ed.), Abiotic and Biotic Stress in Plants. IntechOpen. https://doi.org/10.5772/intechopen.85832
Haleshappa, R., Niketh, S., Kolgi, R.R., Patil, S.J., & Murthy, K.R.S. (2022). Phytochemicals, anti-nutritional factors and proximate analysis of simarouba glauca seeds. International Advanced Research Journal in Science, Engineering and Technology, 9(3), 218-227. https://doi.org/10.17148/IARJSET.2022.9337
Hano, C., Corbin, C., Drouet, S., Quéro, A., Rombaut, N., Savoire, R., Molinié, R., Thomasset, B., Mesnard, F., & Lainé, E. (2017). The lignan (+)-secoisolariciresinol extracted from flax hulls is an effective protectant of linseed oil and its emulsion against oxidative damage. European Journal Lipid Science and Technology, 119 (8), 1600219. https://doi.org/10.1002/ejlt.201600219
Harborne, J.B. (1998). Phenolic Compounds. In: Phytochemical Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5921-7_2
Kashtoh, H., & Baek, K.H. (2022). Actualizaciones recientes sobre los inhibidores de la alfa-glucosidasa fitoconstitutives: un enfoque hacia el tratamiento de la diabetes tipo dos. Plantas (Basilea, Suiza), 11(20), 2722. https://doi.org/10.3390/plants11202722
Kim, T., Song, B., Cho, K.S., & Lee, I.S. (2020). Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. International Journal of Molecular Sciences, 21, 2187. https://doi.org/10.3390/ijms21062187
Liu, X., Cai, J., Chen, H., Zhong, Q., Hou, Y., Chen, W., & Chen, W. (2020). Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis, 141,103980. https://doi.org/10.1016/j.micpath.2020.103980
Lu, J., Wang, Z., Cao, J., Chen, Y., & Dong, Y. (2018). A novel and compact review on the role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 16(1), 80. https://doi.org/10.1186/s12958-018-0391-5
Lustre-Sánchez, H. (2022). Los superpoderes de las plantas: los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2), 1-8. http://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10
Maliehe, A., Ghahremani, S., Kharghani, S., Ghazanfarpour, M., Shariati, K., Kazemi, M., & Khadivzadeh, T. (2019). Effect of Isoflavones and Genistein on Glucose Metabolism in Peri-and Post-Menopausal Women: An Overview of Meta-Analysis. Journal of Menopausal Medicine, 25(2), 69–73. https://doi.org/10.6118/jmm.18143
Martin-Gordo, D.A. (2017). The phenolic compounds: an approach to their biosynthesis, synthesis and biological activity. Revista de Investigación Agraria y Ambiental, 9 (1), 81-104. https://www.researchgate.net/publication/326902933_Los_Compuestos_Fenolicos_Un_Acercamiento_A_Su_Biosintesis_Sintesis_Y_Actividad_Biologica
Miranda, F., & Hernández, E.X. (1963). Los tipos de vegetación de México y su clasificación. Boletin de la Sociedad Bototánica de México. México d. F. 29: 29-179. https://doi.org/10.17129/botsci.1084
Montes-Ávila, J., López-Angulo, G., & Delgado-Vargas, F. (2017). Tannins in Fruits and Vegetables: Chemistry and Biological Functions. In E.M. Yahia (Ed.), Fruit and Vegetable Phytochemicals. https://doi.org/10.1002/9781119158042.ch13
Munteanu, I.G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380
Nawaz, H., Shad, M.A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56, e17129. https://doi.org/10.1590/s2175-97902019000417129
Nazir, M., Tungmunnithum, D., Bose, S., Drouet, S., Garros, L., Giglioli-Guivarc’h, N., Abbasi, B.H., & Hano, C. (2019). Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. With Distinct in Vitro Antioxidant Activities and in Vivo Protective Effects against UV stress. Journal of Agricultural and Food Chemistry, 67(7), 1847–1859. https://doi.org/10.1021/acs.jafc.8b05647
Ngoh, Y.Y., & Gan, C.Y. (2016). Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chemistry, 190, 331-337. https://doi.org/10.1016/j.foodchem.2015.05.120
Niño-Medina, G., Muy-Rangel, D., Garza-Juárez, A.J., Vázquez-Rodríguez, J.A., Méndez-Zamora, G., & Urías-Orona, V. (2017). Composición nutricional, compuestos fenólicos y capacidad antioxidante de cascarilla de garbanzo (Cicer arietinum). Archivos Latinoamericanos de Nutrición, 67(1), 68-73. Recuperado en 04 de diciembre de 2024, de https://ve.scielo.org/pdf/alan/v67n1/art10.pdf
Pío-León, J.F., López-Angulo, G., Vega-Aviña, R., Montes-Ávila, J., Díaz-Camacho, S.P., & Delgado-Vargas, F. (2013). Caracterización fisicoquímica y nutricional de las semillas de Ebenopsis caesalpinioides (Standl.) Britton & Rose, planta nativa de Sinaloa, México, CyTA-Journal of Food, 11(2), 119-126. https://doi.org/10.1080/19476337.2012.702129
Ponce-Fernandez, N.E., Pollorarena-López, G., Rosas-Dominguez, C., López-Peñuelas, M., & Osuna-Izaguirre, C. (2019). Composición química, caracteristicas funcionales y capacidad antioxidante de formulaciones de garbanzo (Cicer arietinum L.) Blanco Sinaloa 92. Agrociencia, 53(1), 35-44. https://agrociencia-colpos.org/index.php/agrociencia/article/view/1749/1749
Quelal, M., Nazate, K., Villacrés, E., & Cuarán, J. (2020). Obtaining and Characterization of a Quinoa Protein Hydrolyzate (Chenopodium quinoa Willd). Enfoque UTE, 10(2), 79-89. https://www.redalyc.org/journal/5722/572262062007/html
Querio, G., Antoniotti, S., Foglietta, F., Bertea, C. M., Canaparo, R., Gallo, M. P., & Levi, R. (2018). Chamazulene Attenuates ROS Levels in Bovine Aortic Endothelial Cells Exposed to High Glucose Concentrations and Hydrogen Peroxide. Frontiers in Physiology, 9, 246. https://doi.org/10.3389/fphys.2018.00246
Quintero-Soto, M.F., Chávez-Ontiveros J., Garzón-Tiznado J.A., Salazar-Salas N.Y., Pineda-Hidalgo K.V., Delgado-Vargas F., & López-Valenzuela, J.A. (2021). Characterization of peptides with antioxidant activity and antidiabetic potential obtained from chickpea (Cicer arietinum L.) protein hydrolyzates. Journal of Food Science, 86(7), 2962-2977. https://doi.org/10.1111/1750-3841.15778
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Rocchetti, G., Pérez-Gregorio, R., Lorenzo, J.M., Barba, F.J., García-Oliveira, P., Prieto, M.A., Simal-Gandara, J., Mosele, J.I., Motilva, M.J., Tomás, M., Patrone, V., Capanoglu, E., & Lucini, L. (2022). Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Comprehensive Reviews in Food Science and Food Safety, 21(2), 811–842. https://doi.org/10.1111/1541-4337.12921
Rochín-Medina, J.J., Mora-Rochín, S., Navarro-Cortez, R.O., Tovar-Jiménez, X., Quiñones-Reyes, G., Ayala-Luján, J.L. & Aguayo-Rojas, J. (2021). Contenido de compuestos fenólicos y capacidad antioxidante de variedades de frijol sembradas en el estado de Zacatecas. Acta Universitaria, 31, e3059. http://doi.org/10.15174/au.2021.3059
Rodríguez-Concepción, M., Avalos, J., Bonet, M.L., Boronat, A., Gomez-Gomez, L., Hornero-Méndez, D., Limón, M.C., Meléndez-Martínez, A.J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M.J., Zacarias, L, & Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93. https://doi.org/10.1016/j.plipres.2018.04.004
Ruiz-Armenta, X. A., Ruiz-Armenta, J. E., Espinoza-Moreno, R. J., Gutiérrez-Dorado, R., Aguilar-Palazuelos, E., Zazueta-Morales, J. J., & Gómez-Favela, M. A. (2022). Use of sesame by-product and optimized extrusion to obtain a functional flour with improved techno-functional, nutritional and antioxidant properties. Acta Universitaria 32, e3494. doi. http://doi.org/10.15174/au.2022.3494
Salas, R., Ordoñez, E., & Reátegui, D. (2015). Polifenoles totales y capacidad antioxidante (DPPH y ABTS) en cuatro variedades de frejol (Phaseolus vulgaris L.) crudo seco, remojado y cocido. Investigación y Amazonía, 5 (1-2), 55-62. https://revistas.unas.edu.pe/index.php/revia/article/view/59/46
Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition, 2, 6. https://doi.org/10.1186/s43014-020-0020-5
Sharma, K.R., & Giri, G. (2022). Quantification of Phenolic and Flavonoid Content, Antioxidant Activity, and Proximate Composition of Some Legume Seeds Grown in Nepal. International Journal of Food Science, 4629290, 8. https://doi.org/10.1155/2022/4629290
Solomon, C.U., Arukewe, U.I., & Onuoha, I. (2013). Preliminary phytochemical screening of different solvent extracts of stem bark and roots of Dennetia tripetala G. Baker. Asian Journal of Plant Sicence and Research, 3(3), 10-13. https://www.researchgate.net/publication/305113922_Preliminary_phytochemical_screening_of_different_solvent_extracts_of_stems_bark_and_roots_of_Dennetia_tripetala
Soto-Aguilar, B.F, Webar, J., & Palacios, I. (2022). Whole food plant-based diet: its mechanisms for the prevention and treatment of obesity. Revista de la Facultad de Medicina Humana, 22(1), 162-170.https://doi.org/10.25176/rfmh.v22i1.3616
Soto-Vásquez, M.R. (2015). Metabolitos secundarios, cuantificación de fenoles y flavonoides de extractos etanólicos de propóleos de tres localidades del Perú. In Crescendo, 6(2), 37-47. https://psykebase.es/servlet/articulo?codigo=5294094
Stavrou, I.J., Christou, A., & Kapnissi-Christodoulou, C.P. (2018). Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chemistry, 269, 355–374. https://doi.org/10.1016/j.foodchem.2018.06.152
Szychowski, P.J., Lech, K., Sendra-Nadala, E., Hernández, F., Figiel, A., Wojdyło, A., & Carbonell-Barrachina, A.A. (2018). Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method. Food Chemistry, 255, 157-164. https://doi.org/10.1016/j.foodchem.2018.02.075
Tosh, S.M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43, 450–460. https://doi.org/10.1016/j.foodres.2009.09.005
Tungmunnithum, D., Drouet, S., Lorenzo, J.M., & Hano, C. (2021). Characterization of Bioactive Phenolics and Antioxidant Capacity of Edible Bean Extracts of 50 Fabaceae Populations Grown in Thailand. Foods, 10(12), 3118. https://doi.org/10.3390/foods10123118
Valencia, D., Rueda-Puente, E.O., Leyva-Peralta, M.A., Mazón-López, S.R., & Ortega-García, J. (2020). Compuestos bioactivos, actividad antioxidante y perfil de ácidos grasos en aceite de semilla de Mezquite (Prosopis spp). Archivos Latinoamericanos de Nutrición, 70(1), 50-59. https://doi.org/10.37527/2020.70.1.006
Veloz-García, R.A., Marín-Martínez, R., Veloz-Rodríguez, R., Muñoz-Sánchez, C.I., Guevara-Olvera, L., Miranda-López, R., González-Chavira, M.M., Torres-Pacheco, I., Guzmán-Maldonado, S.H., Cardador-Martínez, A., Loarca-Piña, G., & Guevara-González, R.G. (2004). Antimutagenic and antioxidant activities of cascalote (Caesalpinia cacalaco) phenolics. Journal of the Science of Food and Agriculture, 84, 1632–1638. http://doi.org/10.1002/jsfa.1852
Wang, R., Zhao, H., Pan, X., Orfila, C., Lu, W., & Ma, Y. (2019). Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Science and Nutrition, 7(5), 1848-1856. https://doi.org/10.1002/fsn3.1038
Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: A review. International Journal of Food Science and Technology, 54(6), 1909-1919. https://doi.org/10.1111/ijfs.14090
Yang, T. Li, C., Xue, W., Huang, L., & Wang, Z. (2021). Natural immunomodulating substances used for alleviating food allergy. Critical Reviews in Food Science and Nutrition, 63(15), 2407-2425. https://doi.org/10.1080/10408398.2021.1975257
Zare, R., Nadjarzadeh, A., Zarshenas, M. M., Shams, M., & Heydari, M. (2019). Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clinical Nutrition, 38(2), 549–556. https://doi.org/10.1016/j.clnu.2018.03.003
Zhao, D.D., Jiang, L.L., Li, H.Y., Yan, P.F., & Zhang, Y.L. (2016). Chemical components and pharmacological activities of terpene natural products from the genus Paeonia. Molecules, 21(19), 1362. https://doi.org/10.3390/molecules21101362

Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional