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RESUMEN

Los microorganismos asociados a los arrecifes de coral desempenan un papel
fundamental en la salud y supervivencia de los corales. El objetivo de este estudio fue identificar
aislados bacterianos de dificil crecimiento, asociados a los octocorales Carijoa riiseiy Leptogorgia
alba, y corales hermatipicos Pocillopora damicornis y Pocillopora verrucosa. Los aislados se
identificaron mediante la secuenciacion del rRNA16S y se identificaron 18, entre ellas, varias
bacterias patégenas (Vibrio sp., Grimontia indica y Pseudoalteromonas piratica). Ademas,
se identificaron aislados asociados a la inhibicion de patégenos (Ruegeria profundi, Ruegeria
conchae, Pseudoalteromonas luteoviolacea y Pseudoalteromonas gelatinilytica). Estos hallazgos
muestran la vulnerabilidad de los organismos marinos a los cambios microbianos y proporcionan
informacion sobre sus respuestas al estrés ambiental.

PALABLAS CLAVE: Arrecifes de coral, bacterias cultivables, microorganismos,
octocorales, Pacifico Oriental.

Introduction

Coral reefs are among the most biodiverse and productive ecosystems worldwide,
supporting approximately 25 % of all marine biodiversity (Spalding et al., 2001; Hughes et al.,
2010; Carlson et al., 2024). The coral holobiont is a complex and dynamic system comprising
Dinoflagellates, bacteria, fungi, archaea, endophytic algae, protists, and viruses, microbial
representatives from all three domains of life, that establish mutualistic interactions with the host
and play a vital role in maintaining coral productivity and homeostasis (Bourne et al., 2016; Peixoto
et al., 2021; Mohamed et al., 2023; He et al., 2024). Particularly, hermatypic corals and octocorals
are integral components of reef ecosystems, forming intricate associations with their symbiotic
microorganisms (Rosenberg et al., 2007; O’Brien et al., 2020; Xiang et al., 2022). Therefore, it is
evident that specific symbiotic bacteria represent a vital determining group within these corals and
octocorals (Lema et al., 2012; Hernandez-Zulueta et al., 2016; Grottoli et al., 2018; Hoffmann &
Panknin, 2020; Mohamed et al., 2023). Several studies have documented the important ecological
roles of coral-associated bacteria (Bourne et al., 2016; van Oppen & Medina, 2020; Samper et
al., 2025). For example, some bacteria are involved in the cycling of organic and inorganic matter,
resources often limited in reef systems. Diazotrophic bacteria, for instance, have been shown
to improve nitrogen fixation (Thompson et al., 2015). Symbiotic bacterial communities also help
protect their coral hosts from extreme UV radiation during summer (Samper et al., 2025) and
act as a natural defense barrier by synthesising antimicrobial compounds (McDevitt-Irwin et al.,
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2017). Indeed, bacterial groups with antimicrobial activity exhibit increased flexibility and dynamic
responses under disease stress, enabling rapid protection against invading pathogens (Bourne et
al., 2016; van Oppen & Medina, 2020; He et al., 2024).

The composition of bacterial assemblages is shaped by multiple factors that regulate
microbial community structure, including the host-specificity of certain bacterial groups (van de
Water et al., 2018; Freire et al., 2019). The remaining components of the bacterial community
are influenced by local environmental conditions (temperature, pH, oxygen concentration, and
nutrients) (Bourne et al., 2016; van Oppen & Medina, 2020) as well as by competitive interactions
between bacterial communities (Zhang et al., 2020; Cheng et al., 2023). Characterizing the
bacterial communities associated with marine invertebrates provides valuable insight into the
ecological roles of these microorganisms (Rappé & Giovannoni, 2003; Falkowski et al., 2008;
Ameen et al., 2021). However, studying bacteria in laboratory settings remains highly challenging,
as only 0.01-0.1% of marine bacterial cells form colonies using standard plating techniques
(Kogure et al., 1979; Caycedo Lozano et al., 2021). These low recovery rates are primarily due
to technical limitations. Nevertheless, the study of culturable bacteria enables the exploration
of microbial diversity, supports fundamental biological research, and facilitates the discovery
of novel bioactive compounds with potential biotechnological applications (Kogure et al., 1979;
Overmann et al., 2017).

Culture media supply essential nutrients for bacterial growth, including carbon sources,
nitrogen, and mineral salts (Bonnet et al., 2019; Caycedo Lozano et al., 2021). However, bacteria
in their natural habitats access a broader array of environmental resources. A major obstacle to
isolating many prokaryotic taxa is the disruption of symbiotic or cooperative relationships between
microorganisms that depend on shared metabolic growth factors, chelating agents, or signaling
molecules (Lewis et al., 2021; Zhang et al., 2024). Therefore, isolating bacterial strains is essential
to gain deeper insights into the microbial communities associated with corals and octocorals from
the Mexican Central Pacific (MCP). In this study, we focused on bacterial isolates that cannot be
cryopreserved due to their inability to regrow in culture media.

Material and Methods
Obtaining bacterial isolates

Bacteria were isolated from the octocorals Carijoa riisei and Leptogorgia alba and the
stony corals Pocillopora damicornis and P. verrucosa. Samples were collected by technical diving
at several sites in the MCP (Table 1), during the presence of the El Nifilo phenomenon, September-
November 2023. The average water temperature during sampling was 30.8 °C, and the collection
depth ranged from 6 to 10 meters. For the octocorals, branch fragments approximately 2-3 cm in
length were collected from three different colonies of each species. Samples were stored on ice at
4 °C and transported to the Laboratorio de Ecologia, Conservacion y Taxonomia (LEMITAX) at the
Universidad de Guadalajara, Mexico. Coral fragments were homogenized using a mortar and pestle
and then placed in sterile seawater tubes. The samples were then subjected to constant agitation
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at one-minute intervals. The culturing strategy was designed to recover marine heterotrophic
bacteria. Samples were plated onto Zobell marine agar (1 g of yeast, 5 g of bactopeptone, 1 mL of
1% ferric chloride, 13 g of agar in 1 L of seawater filtered through 0.22-micron pore-size filters) and
incubated (LSIS-B2V/ICV55-INCUCELL V) for two to five days at 28 °C. Conversely, fragments
approximately 3-5 cm long were collected from three individuals’ colonies of each species of
hermatypic coral. Field processing followed the methodology of Lampert et al. (2016), with some
modifications. Mucus samples were collected using sterile swabs and inoculated directly onto
Zobell marine agar plates. This process was carried out in a sterile area delimited by burners.
These Petri dishes were kept at room temperature for 48 hours and then refrigerated for transport
to the laboratory.

During bacterial purification, only isolates that grew in the initial subculture but failed to grow
in subsequent subcultures were selected. According to the methodology proposed by Gerhardt et
al. (1981), isolates exhibiting distinct morphological traits (shape, margin, texture, pigmentation,
and appearance) were selected. Depending on the case, subcultures were performed using one of
two methods: toothpick inoculation or direct colony streaking. In the firstinstance, the bacterial cells
were inoculated into test tubes containing 2 ml of Zobell marine broth [yeast (1 g), bactopeptone
(5 g), and 1% ferric chloride (1 mL), dissolved in 1 L of seawater filtered through 0.22-micron
pore-size filters]. Subsequently, the cultures were incubated under constant agitation. For the
second strategy, a colony was selected with a sterile loop for direct streaking and inoculated onto
Petri dishes containing marine Zobell medium. In both approaches, cultures were incubated for
48 hours at 28 °C or until bacterial growth was observed.

Molecular Identification

Bacterial isolates were identified by extracting genomic DNA using the “DNeasy Blood
and Tissue Kit” (QIAGEN®), following the manufacturer’s instructions. The 16S rRNA gene was
amplified using polymerase chain reaction (PCR) with a primer pair at a concentration of 10 mM:
27F (5-AGA GTT TGA TCM TGG CTC AG-3’) and 1492R (5-TAC CTT GTT ACG ACT T-3)
(Frank et al., 2008). All PCR reactions were performed using 20 ug/mL of DNA in a total volume
of 25 pL with the DreamTaq Green Master Mix (2X) Kit (#K1081, Thermo Scientific®) under the
following conditions: 1) Initial denaturation at 94 °C for 4 min; 2) 35 cycles at 94 °C for 30 s,
60 °C for 45 s, and 72 °C for 45 s; 3) Final extension at 72 °C for 10 min. Distilled water was used
as a negative control, verifying the presence of the 1500 bp amplicon, corresponding to regions
V1-V9 of the 16S rRNA gene, by 1 % agarose gels visualized with SYBR® Safe staining. The PCR
fragments were purified using the “GenEluteTM Gel Extraction” Kit (NA1111, Sigma-Aldrich®),
following the manufacturer’s instructions. Sequencing was performed using the TagBigDye
Terminator Cycle Sequencing Kit (Perkin ElImer Applied Biosystems, Foster City, USA), purified
with ethanol, and visualized in SeqStudio Genetic Analyzer at the Laboratorio Nacional de
Identificacion y Caracterizacion Vegetal (LaniVeg), Centro Universitario de Ciencias Biolégicas y
Agropecuarias, at the Universidad de Guadalajara. Sequences of ~1400 bp were obtained, and
the quality was assessed using Chromas® software (Technelysium, DNA Sequencing Software).
Sequence alignment and identification were performed using BLAST against the Nucleotide
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database of GenBank (https://www.ncbi.nIm.nih.gov/nucleotide/). A sequence similarity of over
98 % was deemed sufficient for species-level identification, while a 90% similarity was used for
genus-level assignment.

Results and Discussion

A total of 18 bacterial isolates failed to grow in subsequent subcultures. Of these, two were
from C. riisei, six from L. alba, eight from P. damicornis, and two from P. verrucosa. These isolates
initially demonstrated growth on general solid culture medium (Figure 1A). Following the isolation
process, only a small number of colonies were observed (Figure 1B). Despite attempts to enhance
cell growth through liquid cultures, reseeding, or increasing the incubation temperature to 35 °C
and extending the incubation period to 72 hours, no further growth was observed. Additional
enriched media were therefore tested, including Trypticase Soy Agar (TSA), Luria-Bertani (LB),
and selective media such as MacConkey agar and Thiosulfate Citrate Bile Sucrose (TCBS) agar.
However, none of these media were found to support bacterial growth. These results form part of
a broader study investigating bacterial isolates associated with the coral and octocoral species
evaluated in this work. These strains encompass ~600 bacterial isolates, and their characterization
is currently underway.

Only the isolates that failed to demonstrate bacterial growth in subcultures were identified
at the molecular level to preserve any remaining viable cells (Table 1). The bacteria Ruegeria
profundi and the unidentified isolate CrS1SC.3 were found to be associated with C. riisei. The
genera Grimontia, Pseudoalteromonas, Shewanella, Ruegeria and Vibrio were identified as
being associated with L. alba. Among the isolates from scleractinian corals, those associated
with P. damicornis belonged to the genera Alteromonas, Fictibacillus, and Pseudoalteromonas.
Meanwhile, Chromoalobacter israelensis and Shewanella seohaensis were isolated from
P. verrucosa.

This study reports bacterial isolates associated with octocorals and hermatypic corals that
could not be successfully reseeded and cryopreserved, and are referred to as ‘difficult-to-culture’
bacteria (Vartoukian et al., 2016). Bacterial cultivation requires specific conditions to be met to
ensure their viability and growth (nutrients, water, carbon, nitrogen sources, and mineral salts)
(Caycedo Lozano et al., 2021). However, as reported by Cocolin (2010), enrichment and growth
techniques in microbiological media can markedly alter the original microbiota composition of
a sample. This is because certain microbial species may outcompete others, leading to the
underrepresentation or complete loss of uncommon or stressed populations. Furthermore,
environmental factors such as sea temperature fluctuations, nutrient availability, competitive
interactions, and host specificity are key variables that determine the presence of specific bacterial
groups (Zhang et al., 2020). These variables can also contribute to the development of non-
culturable bacterial cells, as laboratory conditions rarely replicate the exact environmental niches
required for growth (Zhang et al., 2024). Bacteria can enter a dormant or ‘viable but not culturable’
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state to endure environmental stressors, rendering them undetectable by conventional culture
methods (Shleeva et al., 2011; Vartoukian et al., 2016). This limitation of traditional cultivation
approaches hampers the accurate assessment of microbial biodiversity in natural ecosystems.
Therefore, the findings presented here should be complemented by the characterization of the
remaining culturable bacteria associated with the sampled coral species. In addition, integrating
amplicon-based metabarcoding analyses would provide a more comprehensive overview of the
associated microbial assemblages.

Figure 1. Coral-associated bacterial isolates.
A) Bacterial isolates from the initial concentrates sample. B) Subcultures with little growth of morphologically

different colonies.
Source: own.
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Table 1. Bacterial isolates present in C. riisei, L. alba, P. damicornis
and P. verrucosa.

Isolation code

CrS1SC.3
CrJ1SC.1
LS1SC.2
LJ2SC.3
LS2SC.4
LJ1SCA1
LJ1SC.3
LJ1SC.5
S1D4.9

S2D2.5

S8D1.7

S8D1.8

S6D2.9

S6D2.6

S1D1B.7

S8D3B.8
S1V6.4

S8V2B.2

Organism from
which isolated

C. riisei
C. riisei
L. alba
L. alba
L. alba
L. alba
L. alba
L. alba

P. damicornis

P. damicornis

P. damicornis

P. damicornis

P. damicornis

P. damicornis

P. damicornis *

P. damicornis *
P. verrucosa

P. verrucosa *

Collection site

Manzanillo, Colima
Manzanillo, Colima
Manzanillo, Colima
Manzanillo, Colima
Manzanillo, Colima
Manzanillo, Colima
Manzanillo, Colima
Manzanillo, Colima

Bahia Chamela,
Jalisco

Bahia Chamela,
Jalisco

Bahia Chamela,
Jalisco

Bahia Chamela,

Jalisco
Cuastecomatitos,

Jalisco
Cuastecomatitos,
Jalisco

Cuastecomatitos,
Jalisco

Carrizales, Colima
Carrizales, Colima

Cuastecomatitos,
Jalisco

Bacterial species

S/l

2Ruegeria profundi
4Shewanella submarina
3Vibrio sp.

3Grimontia indica
3Pseudoalteromonas piratica
2Ruegeria conchae
2Ruegeria conchae

1Pseudoalteromonas rubra

2Pseudoalteromonas luteoviolacea

2Pseudoalteromonas gelatinilytica

'Alteromonas abrolhosensis
3Pseudoalteromonas piratica
'Pseudoalteromonas phenolica
S/l

“Fictibacillus solisalsi
1Chromohalobacter israelensis

4Shewanella seohaensis

NCBI-GenBank
Access Number

SUB14676057

PQ222729
PQ222723
PQ222724
PQ222725
PQ222726
PQ222727
PQ222728
PQ222731

PQ222732

PQ222733

PQ222734
PQ222736

PQ222737

PQ222735
PQ222730
PQ222738

*Correspond to corals with bleaching during sampling. Superscripts indicate the activity reported: 1) Antimicrobial
ability. 2) Antimicrobial ability against pathogens associated with coral diseases. 3) Pathogens related to coral
diseases. 4) There are no reports related to pathogenicity or antimicrobial activity. S/I: Unidentified
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Figure 2. Bacterial isolates associated with Carijoa riisei, Leptogorgia alba,
Pocillopora damicornis and P. verrucose.

Names in green color indicate species related to antimicrobial capacities. * Species related to defense against
coral disease pathogens. Red names indicate pathogenic species related to coral diseases. Names in black
are from no reports related to pathogenicity or antimicrobial activity.

The 2023 El Nifio-Southern Oscillation (ENSO) event was considered an exceptional
phenomenon, characterized by unusual atmospheric disturbances and significant increases in sea
surface temperatures (Pérez- de Silva et al., 2022; Peng et al., 2024). These thermal shifts have
been identified as an important contributing factor to coral bleaching (Reimer et al., 2024) and
have been reported to alter the abundance and composition of coral-associated microorganisms,
particularly pathogenic bacteria (Gibbin et al., 2019). Regarding the bacterial isolates reported
in this study, it seems probable that this event induced stress in the corals and their associated
bacterial assemblages, promoting specific interactions that inhibited bacterial proliferation and
prevented many taxa from growing on standard laboratory culture media.

Vibrio and Pseudoalteromonas represent one of the most prevalent bacterial groups
associated with coral diseases, as evidenced by numerous studies (Tout et al., 2015; Gibbin
et al., 2019). It is well documented that species such as Vibrio coralliilyticus, Vibrio shilonii,
and Pseudoalteromonas piratica are pathogens implicated in tissue loss in corals and the onset
of diseases such as white syndrome and yellow band disease (Beurmann et al., 2017; Ben-
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Haim et al., 2003a,b; Jayasreea et al., 2021). A correlation has been observed between the
presence of V. coralliilyticus and elevated sea surface temperatures in colonies of P. damicornis.
Simultaneously, in the Atlantic and Mediterranean seas, there have been reports of bacterial
diseases affecting octocorals, where the main cause has been V. coralliilyticus (Weil et al., 2017).
Additionally, Grimontia indica, isolated from Leptogorgia alba, harbors virulence-related genes
such as ompU, which are associated with pathogenicity in Vibrio strains, suggesting its potential
as an opportunistic pathogen (Singh et al., 2014). However, the present study identified the
presence of these bacterial groups in the octocoral L. alba and the hermatypic coral P. damicornis.
Notwithstanding the presence of these genera, no visible disease-related lesions were observed
on the coral hosts.

Additionally, species exhibiting antimicrobial and algaecidal properties, including
Alteromonas abrolhosensis, Pseudoalteromonas phenolica, P. rubra, and Chromohalobacter
israelensis, have beenidentified in association with stony corals of the genus Pocillopora (Isnansetyo
et al., 2003; John et al., 2020; Wang et al., 2021; Jia et al., 2023). Some of these species have
been shown to directly inhibit the pathogens responsible for coral diseases. The presence of
these bacteria associated with Pocillopora damicornis and P. verrucosa suggest that these corals
harbor a bacterial assemblage that may function as a protective barrier against infectious agents.
For instance, Ruegeria conchae and R. profundi have demonstrated inhibitory effects against
Vibrio pathogens (Miura et al., 2019). Specifically, R. profundi has exhibited probiotic properties by
suppressing the proliferation of Vibrio coralliilyticus, thereby reducing its pathogenicity, promoting
microbiome homeostasis, and enhancing the holobiont’s resilience to pathogen-induced stress
(Xu et al., 2024). Furthermore, the presence of the Ruegeria group in association with C. riisei and
L. alba may play a pivotal role in pathogen defense, microbiome regulation, and the sustainability
of the studied octocoral species.

Pseudoalteromonas luteoviolacea and P. gelatinilytica, which were isolated from P.
damicornis, have been reported to exhibit antimicrobial activity against Vibrio pathogens, including
V. coralliilyticus and V. alginolyticus (Vidal-Dupiol et al., 2011; Gibbin et al., 2019; Fazeli et al.,
2021; Jayasreea et al., 2021). The isolation of these bacteria from visually healthy coral colonies
suggests they may play an important role in the protection of the host against pathogens such as
P. piratica, which is also associated with P. damicornis. In contrast, bacteria such as Fictibacillus
solisalsi and Shewanella seohaensis, identified in bleached coral colonies, have no known
associations with bleaching, pathogenicity, or probiotic activity. This highlights the need to refine
bacterial isolation methodologies to gain a deeper understanding of the ecological functions of key
bacterial species in disease dynamics and their impact on coral health.

Conclusions

The isolation of culturable bacteria is imperative for comprehending the vital roles of
microorganisms in the environment, for identifying bacterial species that serve as bioindicators of
diseases or contribute to the regulation of microbiomes in marine organisms and substrates. In
this study, we observed the presence of known pathogens, such as Pseudoalteromonas piratica
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and Vibrio species, associated with the octocoral L. alba. Furthermore, we confirmed the presence
of pathogens in P. damicornis in response to rising sea temperatures. Moreover, the presence of
probiotic bacterial species with antimicrobial properties against the aforementioned pathogens
was recorded in both octocorals and scleractinian corals, including Ruegeria conchae, R.
profundi, Pseudoalteromonas luteoviolacea, and P. gelatinilytica. It is imperative to acknowledge
the significance of identifying non-culturable bacteria, as this facilitates the consideration of
potential requirements that should be taken into account for the future characterisation of bacterial
communities. This study lends further support to the notion that rising sea temperatures are
adversely affecting marine organisms. It is recommended that future studies consider utilising an
integrated approach of 16S rRNAribosomal gene amplicon analysis (metabarcoding) and traditional
microbiological methods, such as isolation and culture. It’s essential to study the diversity of
microorganismes, including non-culturable microorganisms, for developing a more comprehensive
understanding of the plasticity of bacterial assemblages in response to environmental change, as
well as for evaluating the true potential of these microorganisms as regulatory agents that may
support host survival under environmental stress.
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